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MAX IV magnet design 

1) Presentation of the design concept. 
2) Why have we done it like this? 
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MAX IV 3 GeV ring lattice: 

• Each achromat consists of five unit cells 
and two matching cells. 

• 20 achromats x 7 cells = 140 cells total 
• achromat length = 26.4 m 
• ring circumference = 26.4 x 20 = 528 m  
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achromat 3D cad assembly: 

M1 

U1 
U2 

U3 

U4 

U5 

M2 

• Each cell is realized as one 
mechanical unit containing all 
magnet elements. 

• Each unit consists of a bottom and a 
top yoke half, machined out of one 
solid iron block, 2.3-3.4 m long. 
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a MAX IV magnet block: 

M1 
U1 

U2 
U3 

U4 
U5 M2 

• a U5 bottom half → 
• ↓ an assembled U5 
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a MAX IV 
magnet block: 

SD 

SD 

DIP 

QFm 

QFm 

SFm 

corr v 
corr h 

• Dismountable at 
horizontal midplane. 

• all yoke parts = Armco 
low carbon steel. 

• Quad and corr pole 
tips mounted over 
the coil ends. 

• 6pole and 8pole 
magnet halfs 
mounted into guiding 
slots in yoke block. 

• Electrical and water 
connections located 
towards inside. 
 

bpm 

DIP pole face strip 
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magnet elements: 

DIP, DIPm 
-0.524 T, 8.622 T/m 
g = 28 mm at x=0 

QF: -40.34 T/m 
QFm: -37.79 T/m 
QFend: -36.59 T/m 
QDend: 25.10 T/m 
g = Ø25 mm 

SFi: -2069 T/m2 

SFo: -1941 T/m2 

g = Ø25 mm 

OXY: -65060 T/m3 

OXX: 32394 T/m3 

g = Ø25 mm 

... + SFm, SD, SDend (g = Ø25 mm), OYY (g = Ø36 mm) and corr h/v (g = 25 mm) 
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design procedure: 

• 2D simulations were performed using FEMM for all magnet elements. 
• 3D simulations were performed using Radia for dipoles and quads as 

standalone magnets, ie no 3D simulations of the full magnet blocks. 
 
 
 
 
 
 

• The dipole was evaluated, and represented in the lattice, as consisting of 
12 longitudinal slices. 

• Lattice and magnet design were iterated against each other.  
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• M1/M2 DIPm soft end reduces thermal load to the long straight. 

more details: 

M1 with DIPm bottom coil and 
pole face strip hidden 

• Top half aligned to bottom half by 3 guiding 
blocks on bottom + top outer reference surfaces. 

• Field clamps reduce the dipole fringe field 
distribution sensitivity to coil shape. 

field clamp 

soft end 

guide blocks 

guide block 
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specification 

• Suppliers deliver magnet blocks 
fully assembled and wired, ready 
to put directly in ring tunnel and 
connect ps and water. 

• Suppliers are responsible for 
mechanical tolerances on parts. 

• MAX IV is responsible for 
magnetic design. 

 
 

• Mechanical tolerances on the yoke bottom and top pieces are defined 
relative to reference planes A, B, C and D. 

• Dipole surface and quad/6pole/8pole guiding surfaces have ±0.02 mm 
tolerance relative to D, A-B and C. 

• Suppliers perform field measurements of all magnet elements to MAX IV 
instructions. 
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MAX IV magnet design 

1) Presentation of the design concept. 
2) Why have we done it like this? 
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25 mm 25 mm 21 mm 

why Ø25 mm pole gap? 

• The pole aperture has a direct influence on lattice compactness, by 
defining minimum distance between elements and minimum length for 
quads, 6poles, ... 

• minimum distance between consecutive elements ≈ one pole gap 
• If shorter, fringe fields overlap, destroying field quality. 

M1 view from above with top yoke half hidden 
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why Ø25 mm pole gap? 

• Assuming a fixed max pole tip field, Bpt, max quad gradient = Bpt/pole r 
• We have chosen max Btp ≈ 0.5 T, which keeps the whole pole face in the 

linear region of the iron B(H) curve. Resulting max G ≈ 40 T/m. 
• Our quads are at or close to this strength, so with larger pole radius, they 

would have needed to be longer. 
• Our 6poles are in the same situation, at minimum length for this pole gap. 

 
250 mm 250 mm 
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why Ø25 mm pole gap? 

• The pole gap also has an indirect influence on lattice compactness through 
coil design, in that the required NI is proportional to g for dipoles, (g/2)2 
for quads, (g/2)3 for 6poles, ... making it easer to fit the coil ends 
longitudinally between consecutive magnet elements for smaller pole 
gaps. 

• A negative aspect is that with smaller pole gap, the relative strength of 
random field errors due to manufacturing tolerances increase, since the 
tolerances are fixed, constituting a larger fraction of the pole gap. 

• Another consequence with smaller pole gap is that vacuum conductance 
decreases, in our case necessitating distributed pumping. 
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why the magnet block concept? 

As opposed to standalone magnets not sharing a common return yoke... 
• First of all, separate magnets on individual adjustment stands were never 

considered, because 
– we assumed that optical alignment would be less accurate between 

consecutive elements. 
– given the small footprint of our magnet elements, designing 

adjustment stands stiff enough to give the same level of vibration 
stability would have been difficult. 

• So, from the perspectives of alignment and vibration stability, we were 
looking at a solution with several consecutive magnet elements in the 
same mechanical unit. 

• Then there are two paths...  
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Based on field meas. data 
for example NSLS-II girders: 
 

 
 
 
 
 
 

↑ individual magnet vertical and 
sideways positions adjusted to 
stretched wire field meas. data. 
 
 

Based on mech. tolerances 
for example MAX II girders: 
 

 
 
 
 
 
 

↑ Girders have precision machined 
fixed mating surfaces for each 
magnet element. 
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Two possibilities for girders 

why the magnet block concept? 



why the magnet block concept? 

• At MAX IV, we typically want to subcontract as much work as possible to 
industry, minimizing the internal personnel need.  

• We therefore chose an alignment concept based on mechanical tolerances 
over field meas. believing this is easier to subcontract to industry. 
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why the magnet block concept? 
DIP 

QF 

Martin Johansson, 
Workshop on Accelerator R&D for Ultimate Storage Rings, Huairou, Beijing, China, Oct 30-Nov 1, 2012 

 
18/19 

• DIP and QF cross sections →  
• Separate magnets on a girder requires one 

more mating surface, decreasing the 
alignment accuracy. Therefore the magnet 
block concept. 

• Expected rms alignment as sum of squares 
of parts, x,y = ±0.016,±0,020 for dipoles, = 
±0.018,±0,021 for quads, = ±0.023,±0,025 for 
quads, with pessimistic assumption each 
part at max tolerance. 

• Also, it is easier to achieve good vibrational 
stability with the magnet block concept. 
Lowest eigenfrequency ≈ 90 Hz for MAX IV, 
vs ≈ 30 Hz for MAX II. 
 
 
 
 



Thank you for your attention! 
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