NNLO mixed QCD-EW corrections to the Drell-Yan production of Z and W bosons

Zhaoting Pan
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-IN2P3/INPG, F-38026 Grenoble, France

In collaboration with: Roberto Bonciani

Outline of the Talk

- Introduction and Motivation
- Importance of an accurate calculation for the Drell-Yan process
- Sensitivity and Measurement to M_{W}
- The status of the radiative corrections
- Description of the Calculation
- Narrow-width approximation
- Using Cutkosky rule for the calculation of the real radiation
- Laporta algorithm and differential equations
- Conclusions

Introduction and Motivation

Drell-Yan production of Z and W bosons, $p p(\bar{p}) \rightarrow Z \rightarrow l^{+} l^{-}$and $p p(\bar{p}) \rightarrow W \rightarrow l \nu$

- Check of the SM
- Search new physics.
- DY process has big cross section and clean experimental signature
- Calibration and monitoring machine
- Detector performance Z and W production
- Determine and monitor the hadronic and partonic luminosities at the LHC

Sensitivity and Measurement to M_{W}

- sensitivity to M_{W}

G.bozzi, J.Rojo, and A.Vicini '11
- With nominal M_{W} which differ by 10 MeV
- The total cross section (within cuts) is very weakly sensitive to a M_{W} variation
- The ratio of the two distributions generated shows a deviation from unity at the level of few per mil, with non trivial shape.

Sensitivity and Measurement to M_{W}

- W Mass (transverse mass and p_{T} distributions) is suppose to be measured at Tevatron with $\Delta M_{W} \sim 15 \mathrm{MeV}$ and at LHC even more precisely ($\Delta M_{W} \sim 7 \mathrm{MeV}$).
- At fixed (NLO)order, EW effects are tiny, but not negligible in the view of $\Delta M_{W}=15 \mathrm{MeV}$
- Mixed QCD-EW corrections important also for the stabilization of the scale dependence:
- NLO EW (partonic cross section) is leading order in α_{S} for what concerns the hadronic observable.
- The mixed corrections can reduce the scale variation

For this reasons require an accurate theoretical and reliable theoretical prediction.

The status of the QCD corrections

- A complete calculation of the NNLO corrections to vector (W, Z) total production rate

Hamberg, van Neerven, Matsuura '91; van Neerven, Zijstra '92; Harlander and Kilgore '02

- Electroweak gauge boson rapidity distributions at NNLO in QCD

Anatasiou, Dixon Melnikov and Petriello '04

- W-boson production cross section at the LHC at NNLO (including W decay products)

Melnikov and Petriello '06

- The full exlcusive NNLO calculation, including the leptonic decay of the vector Boson $\left(V=Z / \gamma^{*}, W^{+}, o r W^{-}\right)$

Catani, Cieri, Ferrera, De Florian,Grazzini '09

- NLO matched with resummation NLL in p_{T}^{W} / M_{W}

Bozzi, Catani, De Florian, Ferrera, Grazzini '09

The status of the eletroweak corrections

W production NLO

- Electroweak radiative corrections to resonant W boson production

Wackeroth, Hollik '97; Baur et al. '99

- Eletroweak radiative corrections to $p p(\bar{p}) \rightarrow W \rightarrow l \nu$ beyond the pole appximation

Zykunov et al. '01; Dittmaier, Krämer '02; Baur, Wackeroth '04; Arbuzov et al. '06; Carloni Calame et al. '06 (HORACE); Hollik, Kasprzik, Kniehl '08

- Photon induced processes of electroweak calculation for the charge current Drell-Yan

Dittmaier, Krämer '05; Baur, Wackeroth '04; Carloni Calame et al. '06; Arbuzov et al. '07 ...
Z production NLO

- QED radiative corrections
- weak radiative corrections
- Electroweak radiative corrections

Baur et al.'02 Carloni Calame et al.'07 (HORACE)

- Photon induced processes of production of a high transverse-momentum lepton pair

Eletroweak and QCD mixed corrections

- Combined effect of the QCD resummation and QED radiative correction to W-boson observables at Tevatron

Qing-Hong Cao and C.-P.Yuan '04

- Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

Balossini, Calame et al '10

- Two-loop form factors in theories with mass gap and Z-boson production

Kotikov, Kuhn and Veretin.'07

- Two-Loop Virtual Corrections to Drell-Yan Production at order $\alpha^{3} \alpha_{S}$

Kilgore, Sturm, '11

- Combination of electroweak and QCD corrections to resonant Z and W production

Bonciani, Degrassi, Vicini, in preparation

Higher order corrections

- Tree-level contributions

- NLO contribution

up to $1 l$ box diagrams with massive propagators
- NNLO contribution

up to $2 l$ boxes with masses, $1 l$ boxes with masses, $1 l$ pentagon $+\ldots$

First step: Narrow-width approximation

- Narrow-width approximation

$$
\frac{\Gamma_{Z}}{M_{Z}}, \frac{\Gamma_{W}}{M_{W}} \ll 1
$$

- Factorizable corrections: they do not mix production and decay stages

Non-factorized contribution are of $\sim \mathcal{O}\left(\Gamma_{z} / m_{z}\right)$

- Now we concentrate on the $\alpha \alpha_{S}$ corrections to the production process
- virtual corrections: two-loop $2 \rightarrow 1$ processes
- real correction: one-loop real-virtual $2 \rightarrow 2$ corrections and tree-level real $2 \rightarrow 3$ corrections

Feynman Diagrams for the vitual corrections

- Two-loop $\alpha \alpha_{S}$ virtual diagrams:

(h)
(d)

(e)

(h)

(g)

40 diagrams contribute to the Z production

(h)

44 diagrams contribute to the W production

Feynman Diagrams for the real radiation

- Feynman diagrams for the double-real radiation at NNLO:
 $W /$
g
γ

- Feynman diagrams for the single-real radiation at NNLO:
- photon radiation in the final state

- gluon radiation in the final state

Calculation of the Feynman diagrams

- Expression of the observable (modulus squared of the amplitude) in terms of (many) dimensionally regularized scalar integrals
- Use of the Cutkosky rules for the phase-space integrals (in order to use the same technique as for the virtual corrections)
- Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)
- Calculation of the MIs: generation of the system of first-order linear differential equations
- Solution of the system in Laurant series of $(D-4)$. Coefficients of the series expressed in terms of Harmonic Polilogarithms (HPLs) or related functions

Calculation of the Feynman diagrams

- Expression of the observable (modulus squared of the amplitude) in terms of (many) dimensionally regularized scalar integrals
- Use of the Cutkosky rules for the phase-space integrals (in order to use the same technique as for the virtual corrections)
- Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)
- Calculation of the MIs: generation of the system of first-order linear differential equations
- Solution of the system in Laurant series of $(D-4)$. Coefficients of the series expressed in terms of Harmonic Polilogarithms (HPLs) or related functions

Cutkosky rules for the phase-space integrals

- Illustration of the method.
- considere the following double-real contribution:

$$
|\underset{\overrightarrow{p_{2}}}{\stackrel{\underbrace{}_{k_{1}}}{\boldsymbol{k}_{2}}}|^{\boldsymbol{p}_{1}} \sim \int \frac{d^{d} k_{1} d^{d} k_{2} \delta\left(p^{2}-m^{2}\right) \delta\left(k_{1}^{2}\right) \delta\left(k_{2}^{2}\right)[\ldots]}{\left(p-p_{1}\right)^{4}\left(k_{1}-p_{2}\right)^{4}}
$$

- replace delta-functions in the above integral by the difference of two propagators with different causal prescription:

$$
2 i \pi \delta\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}+i 0}-\frac{1}{p^{2}-m^{2}-i 0}
$$

- the r.h.s of last equation is equal to a forward scattering diagram:

Topologies for the real corrections

- 14 topologies with 3 cuts:
- The "planar" diagrams with 3 cuts:

- The "cross" diagrams with 3 cuts:

Topologies for the real corrections

- 20 topologies with 2 cuts:
- 2 cuts diagrams with one massive propagator:

- 2 cuts diagrams with two massive propagators:

- 2 cuts diagrams with three massive propagators:

the bold lines represent the massive W and Z bosons, the thin lines represent the massless gluon, photon and light quarks.

Reduction of the Feynman diagrams

- Expression of the observable (modulus squared of the amplitude) in terms of (many) dimensionally regularized scalar integrals
- Use of the Cutkosky rules for the phase-space integrals (in order to use the same technique as for the virtual corrections)
- Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)
- Calculation of the MIs: generation of the system of first-order linear differential equations
- Solution of the system in Laurant series of $(D-4)$. Coefficients of the series expressed in terms of Harmonic Polilogarithms (HPLs) or related functions

Reduction of the Feynman diagrams

- Integration by parts identities (IBPs)

$$
\int \frac{d^{d} k_{1} d^{d} k_{2}}{(2 \pi)^{(d-2)}} \frac{\partial}{\partial k_{1,2}^{\mu}} v^{\mu} \frac{S_{1}^{n}[\ldots] S_{q}^{m}}{D_{1}^{a}[\ldots] D_{t}^{b}}=0
$$

where $v^{\mu}=p_{i}^{\mu}, k_{i}^{\mu}, i=1,2$.

- Laporta Algorithm: For a certain power of the denominator and numerator the number of generated equations is bigger than the unknow amplitudes that come out because of the derivative of the IBPs.
- Based on this algorithm, some public programs are available
- AIR - Maple package
(C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046)
- FIRE - Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)
- REDUZE - REDUZE2 C++/GiNaC packages
(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;
A. von Manteuffel and C. Studerus, arXiv:1201.4330)

List of virtual Master Integrals

van Neerven '86; Gonsalves '86; Fleischer, Kotikov, Veretin '99; Davydychev, Kalmykov '03; Aglietti, Bonciani. '03-'04

List of Master Integrals for the real radiation

- 2 cuts MIs
- 2 cuts Masters with one massive propagator:

- 2 cuts Masters with two massive propagators:

- 2 cuts Masters with three massive propagators:

Some of them have been calculated by Anastasiou and Melnikov('02).

List of Master Integrals for real radiation

- The masters with 3-cut

A dot on the propagator line means that the propagator is raised to power 2. Bold lines represent a massive propagator. Thin lines denote massless propagators.

Differential Equations for the MIs

- Expression of the observable (modulus squared of the amplitude) in terms of (many) dimensionally regularized scalar integrals
- Use of the Cutkosky rules for the phase-space integrals (in order to use the same technique as for the virtual corrections)
- Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)
- Calculation of the MIs: generation of the system of first-order linear differential equations
- Solution of the system in Laurant series of $(D-4)$. Coefficients of the series expressed in terms of Harmonic Polilogarithms (HPLs) or related functions

Differential Equations for the MIs

For a given topology, when the system of identities is not reducible, we have a (hopefully) small number of independent integrals called MI. In the case of three-point functions:

$$
F_{i}\left(Q^{2}, p_{1}^{2}, p_{2}^{2}\right)=\int d^{D} k_{1} d^{D} k_{2} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{D_{1}^{m_{1}} \cdots D_{t}^{m_{t}}}
$$

Using all the identity-relations (IBP's, LI, Sym) we can construct the following system of first-order linear differential equations:

$$
\frac{d F_{i}}{d Q^{2}}=\sum_{j} h_{j}\left(Q^{2}, m^{2}\right) F_{j}+\Omega_{i}
$$

where $i, j=1, \ldots, N_{M I s}$.
Ω_{i}
This term involves integrals of the class $I_{t-1, r, s}$ (sub-topologies) to be considered KNOWN
V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.
E. Remiddi, Nuovo Cim. 110A (1997) 1435.

Example of the reduction

- Example of the IBPs for one reducible topology with 3 cuts

Master1

Master 2
- Example of the DIFF for the MIs with 3 cuts

where $z=M^{2} / s$. The functions G_{i}, F_{i} are known directly from the reduction process.
- Calculation of the MIs
- Master1 have to be integrated directly.
- Master3 and Master2 can be calculated using the differential equations method. The constants of integration can be found imposing the initial condition (regularity at $z \rightarrow 1$).

The solution of the base Master with three-cut

- The basic MIs with three cuts
- Using the optical theorem, we can relate the cut diagrams to the imaginary part of the loop integral:

- Extracting the imaginary part from the loop integral and using the relevant Kummer relation for the hypergeometric function, we find:

$$
\begin{aligned}
1 \\
1
\end{aligned}=N\left[(z)^{-1+2 \epsilon}(-\pi) \frac{\Gamma(1-\epsilon)^{3}}{\Gamma(\epsilon)^{2} \Gamma(3-3 \epsilon) \Gamma(2-2 \epsilon)}(1-z)^{3-4 \epsilon}{ }_{2} F_{1}(1-\epsilon, 2-2 \epsilon, \epsilon, z)\right]
$$

N a nomalization factor.It's important to extract the $(1-z)^{3-4 \epsilon}$ part. It will be explained by the following example.

Harmonic Polylogarithms (HPLs)

- Weight $=1$

$$
H(0, x)=\ln x \quad H(-1, x)=\int_{0}^{x} \frac{d t}{1+t}=\ln (1+x) \quad H(1, x)=\int_{0}^{x} \frac{d t}{1-t}=-\ln (1-x)
$$

- Weight >1

If $\vec{a}=\overrightarrow{0}$ we define $H(\overrightarrow{0}, x)=\frac{1}{\omega!} \ln ^{\omega} x$. If $\vec{a} \neq \overrightarrow{0}$:

$$
H(\vec{a}, x)=\int_{0}^{x} d t f\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, t\right) \quad \frac{d}{d x} H(\vec{a}, x)=f\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, x\right)
$$

- The Algebra: $\omega_{\vec{a}} \times \omega_{\vec{b}}=\omega_{\vec{a}} \times \omega_{\vec{b}}$

$$
H(\vec{a}, x) H(\vec{b}, x)=\sum_{\vec{c}=\vec{a} \uplus \vec{b}} H(\vec{c}, x)
$$

- Integration by Parts

$$
H\left(m_{1}, \ldots, m_{q}, x\right)=H\left(m_{1}, x\right) H\left(m_{2}, \ldots, m_{q}, x\right)-\ldots+(-1)^{q+1} H\left(m_{q}, \ldots, m_{1}, x\right)
$$

- Connection with Nielsen's polylog and Spence functions:

$$
S_{n, p}(x)=H\left(\overrightarrow{0}_{n}, \overrightarrow{1}_{p}, x\right) \quad L i_{n}(x)=H\left(\overrightarrow{0}_{n-1}, 1, x\right)
$$

A.B.Goncharov, Math. Res. Lett. 5 (1998), 497-516.
E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725.

The solution of non-divergence factor Master3

- Using threshold condition to constrain the integral constants.
- $z=1$ is the threshold for the Z/W boson production, the integrals vanish in D dimension:

$$
\text { 位 }(z=1)=0
$$

- The solution of the Master3.

$$
\begin{aligned}
& +\frac{i \pi}{a^{2}} z(1-z)^{4 \epsilon}\left[\frac{1}{\epsilon^{2}}(H(0, z))-\frac{1}{\epsilon}\left(\frac{H(0,0, z)}{2}+H(1,0, z)+\zeta(2)\right)\right. \\
& +\frac{H(0, z)}{2} \zeta(2)-\frac{H(0,0,0, z)}{4}-H(0,0,1, z)-\frac{H(0,1,1-z) * H(0, z)}{8}-\frac{H(0,1,1-z)}{2} \\
& +\frac{H(1,0,0, z)}{2}+\frac{\zeta(3)}{4}+\mathcal{O}((D-4)]
\end{aligned}
$$

Example of solving Master8

- The threshold condition
- $z=1$ is the threshold for the Z/W boson production, the integrals vanish in D dimensions:

- The behavior of the $(1-z)^{-1+a \epsilon}$.

$$
\begin{aligned}
(1-z)^{-1+a \epsilon}= & \frac{\delta(1-z)}{a \epsilon}+a \epsilon\left[\frac{1}{1-z}\right]_{+}+\frac{(a \epsilon)^{2}}{2!}\left[\frac{(1-z)}{1-z}\right]_{+} \\
& +\frac{(a \epsilon)^{3}}{3!}\left[\frac{(1-z)^{2}}{1-z}\right]_{+}+\mathcal{O}\left(\left(\epsilon^{4}\right)\right)
\end{aligned}
$$

If this term expanded at $D=4$ dimension will give a soft divergence, It will be cancelled by the virtual singularity. Moreover when solving the differential equations and $z=1$, it should be extract before expanding in ϵ. Otherwise We cannot constrain the integral constant.

Example of solving Master8

- The differential equation of the Master8

- the solution of the Maser8

$$
\begin{aligned}
+ & \frac{1}{\epsilon}\left(\frac{3 H(0,0, z)}{2}+\frac{H(0,1, z)}{2}+\frac{H(1,0, z)}{2}+\frac{H(1,1, z)[1-z]_{+}}{2}-\zeta(2)+\zeta(2) \delta(1-z)\right) \\
& +\frac{15 H(0, z)}{8} \zeta(2)-\frac{15 H(0,0,0, z)}{8}-H(0,0,1, z)-\frac{9 H(0,1,0, z)}{8}-\frac{H(0,1,1, z)}{2} \\
& -\frac{H(0,1,1, z)}{2}[1-z]_{-} \frac{H(1, z) \zeta(2)}{8}-\frac{3 H(1,0,0, z)}{8}-\frac{H(1,0,1, z)}{2}-\frac{5 H(1,1,0, z)}{8} \\
& -\frac{H(1,1,1, z)[1-z]_{+}}{2}+\zeta(2)[1-z]_{+} \frac{13 \zeta(2)}{8}-\frac{5 \zeta(3) \delta(1-z)}{\frac{4}{4}}+\mathcal{O}((D-4)]
\end{aligned}
$$

Conclusions

- I summarized the importance of an accurate theoretical prediction for the Drell-Yan production of Z and W bosons at hadron colliders, and the status of the radiative corrections
- I reviewed the method for the analytic calculation of Feynman diagrams, based on the reduction to the Master Integrals via the "Laporta algorithm" and their calculation with the "differential equations method"
- I focused on the QCD-EW mixed radiative corrections. I summarized the calculation of the virtual corrections. I then focused on the calculation of the real radiation, needed to complete the NNLO corrections. I performed the reduction to the MIs using the method based on the Cutkowsky rules. I finished all the differential equation of Z boson production and am now working to the 3 -cut solution of the corresponding differential equations of the W boson production.

Thank you for your attention

