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Introduction and Motivation

Drell-Yan production of Z and W bosons, pp(p̄) → Z → l+l− and pp(p̄) → W → lν

Check of the SM

Search new physics.

DY process has big cross section and clean experimental signature

Calibration and monitoring machine

Detector performance Z and W production

Determine and monitor the hadronic and partonic luminosities at the LHC
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Sensitivity and Measurement to MW

sensitivity to MW
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G.bozzi, J.Rojo, and A.Vicini ’11

With nominal MW which differ by 10MeV

The total cross section (within cuts) is very weakly sensitive to a MW variation

The ratio of the two distributions generated shows a deviation from unity at the level

of few per mil, with non trivial shape.
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Sensitivity and Measurement to MW

W Mass (transverse mass and pT distributions) is suppose to be measured at Tevatron

with ∆MW ∼ 15MeV and at LHC even more precisely (∆MW ∼ 7MeV).

At fixed (NLO)order, EW effects are tiny, but not negligible in the view of ∆MW = 15MeV

Mixed QCD-EW corrections important also for the stabilization of the scale dependence:

NLO EW (partonic cross section) is leading order in αS for what concerns the

hadronic observable.

The mixed corrections can reduce the scale variation

For this reasons require an accurate theoretical and reliable theoretical prediction.
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The status of the QCD corrections

A complete calculation of the NNLO corrections to vector (W ,Z) total production rate

Hamberg, van Neerven, Matsuura ’91; van Neerven, Zijstra ’92; Harlander and Kilgore ’02

Electroweak gauge boson rapidity distributions at NNLO in QCD

Anatasiou, Dixon Melnikov and Petriello ’04

W -boson production cross section at the LHC at NNLO (including W decay products)

Melnikov and Petriello ’06

The full exlcusive NNLO calculation, including the leptonic decay of the vector Boson

(V = Z/γ∗,W+, orW− )

Catani, Cieri, Ferrera, De Florian,Grazzini ’09

NLO matched with resummation NLL in pWT /MW

Bozzi, Catani, De Florian, Ferrera, Grazzini ’09
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The status of the eletroweak corrections

W production NLO

Electroweak radiative corrections to resonant W boson production

Wackeroth, Hollik ’97; Baur et al. ’99

Eletroweak radiative corrections to pp(p̄) → W → lν beyond the pole appximation

Zykunov et al. ’01; Dittmaier, Krämer ’02; Baur, Wackeroth ’04; Arbuzov et al. ’06; Carloni Calame et al. ’06 (HORACE);

Hollik, Kasprzik, Kniehl ’08

Photon induced processes of electroweak calculation for the charge current Drell-Yan

Dittmaier, Krämer ’05; Baur, Wackeroth ’04; Carloni Calame et al. ’06; Arbuzov et al. ’07 ...

Z production NLO

QED radiative corrections

Baur et al.’98

weak radiative corrections

Zykunov et al.’07

Electroweak radiative corrections

Baur et al.’02 Carloni Calame et al.’07 (HORACE)

Photon induced processes of production of a high transverse-momentum lepton pair

Carloni Calame et al. ’07 (HORACE)
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Eletroweak and QCD mixed corrections

Combined effect of the QCD resummation and QED radiative correction to W -boson
observables at Tevatron

Qing-Hong Cao and C.-P.Yuan ’04

Combination of electroweak and QCD corrections to single W production at the Fermilab

Tevatron and the CERN LHC

Balossini, Calame et al ’10

Two-loop form factors in theories with mass gap and Z-boson production

Kotikov, Kuhn and Veretin.’07

Two-Loop Virtual Corrections to Drell-Yan Production at order α3αS

Kilgore, Sturm, ’11

Combination of electroweak and QCD corrections to resonant Z and W production

Bonciani, Degrassi, Vicini, in preparation
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Higher order corrections

Tree-level contributions

Z

q

q̄

l− (q)

l+ (q̄)

W

q

q̄′

l− (q)

v̄ (q̄′)

NLO contribution

+ ... + ...

up to 1l box diagrams with massive propagators

NNLO contribution

+ ... + ...

up to 2l boxes with masses, 1l boxes with masses, 1l pentagon + ...
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First step: Narrow-width approximation

Narrow-width approximation

ΓZ

MZ
,
ΓW

MW
≪ 1

Factorizable corrections: they do not mix production and decay stages

Z

ΓZ

MZ
→ 0

Production Decay

Non-factorized contribution are of ∼ O(Γz/mz)

Now we concentrate on the ααS corrections to the production process

virtual corrections: two-loop 2 → 1 processes

real correction: one-loop real-virtual 2 → 2 corrections and tree-level real 2 → 3

corrections
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Feynman Diagrams for the vitual corrections

Two-loop ααS virtual diagrams:
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ū

(c)

Z

g

γ, Z, W

u

ū
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44 diagrams contribute to the W production

Bonciani, Degrassi, Vicini, in preparation
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Feynman Diagrams for the real radiation

Feynman diagrams for the double-real radiation at NNLO:
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Feynman diagrams for the single-real radiation at NNLO:

photon radiation in the final state

γ

W

gluon radiation in the final state
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Calculation of the Feynman diagrams

Expression of the observable (modulus squared of the amplitude) in terms of (many)

dimensionally regularized scalar integrals

Use of the Cutkosky rules for the phase-space integrals (in order to use the same

technique as for the virtual corrections)

Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding

algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)

Calculation of the MIs: generation of the system of first-order linear differential equations

Solution of the system in Laurant series of (D − 4). Coefficients of the series expressed

in terms of Harmonic Polilogarithms (HPLs) or related functions
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Cutkosky rules for the phase-space integrals

Illustration of the method.

considere the following double-real contribution:

p1

p2 k1

k2

p
2

∼

∫

ddk1ddk2δ(p2 −m2)δ(k21)δ(k
2
2) [. . .]

(p− p1)
4 (k1 − p2)

4

replace delta-functions in the above integral by the difference of two propagators

with different causal prescription:

2 i πδ
(

p2 −m2
)

→
1

p2 −m2 + i0
−

1

p2 −m2 − i0

the r.h.s of last equation is equal to a forward scattering diagram:

=

Anastasiou, Melnikov ’02
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Topologies for the real corrections

14 topologies with 3 cuts:

The "planar" diagrams with 3 cuts:
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The "cross" diagrams with 3 cuts:
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Topologies for the real corrections
20 topologies with 2 cuts:

2 cuts diagrams with one massive propagator:

p1 p1

p2 p2

p1 p2

p2 p1

p1 p1

p2 p2

p1 p2

p2 p1

p1 p1

p2 p2

p1 p2

p2 p1

p1 p2

p2 p1

p1 p1

p2 p2

2 cuts diagrams with two massive propagators:
p1 p1

p2 p2

p1 p2

p2 p1

p1 p1

p2 p2

p1 p2

p2 p1

p1 p1

p2 p2

p1 p2

p2 p1

p1 p2

p2 p1

p1 p1

p2 p2

2 cuts diagrams with three massive propagators:

p1 p1

p2 p2

p1 p2

p2 p1

p1 p1

p2 p2

p1 p2

p2 p1

the bold lines represent the massive W and Z bosons, the thin lines represent the

massless gluon, photon and light quarks.
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Reduction of the Feynman diagrams

Expression of the observable (modulus squared of the amplitude) in terms of (many)

dimensionally regularized scalar integrals

Use of the Cutkosky rules for the phase-space integrals (in order to use the same

technique as for the virtual corrections)

Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding

algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)

Calculation of the MIs: generation of the system of first-order linear differential equations

Solution of the system in Laurant series of (D − 4). Coefficients of the series expressed

in terms of Harmonic Polilogarithms (HPLs) or related functions
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Reduction of the Feynman diagrams

Integration by parts identities (IBPs)

∫

ddk1ddk2

(2π)(d−2)

∂

∂kµ1,2
vµ

Sn
1 [. . .]Sm

q

Da
1 [. . .]Db

t

= 0

where vµ = pµi , k
µ
i , i = 1, 2.

Tkachov, Chetyrkin ’81

Laporta Algorithm: For a certain power of the denominator and numerator the number of

generated equations is bigger than the unknow amplitudes that come out because of the

derivative of the IBPs.

Based on this algorithm, some public programs are available

AIR – Maple package

(C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046)

FIRE – Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)

REDUZE – REDUZE2 C++/GiNaC packages

(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;

A. von Manteuffel and C. Studerus, arXiv:1201.4330)
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List of virtual Master Integrals

1 MI 1 MI 1 MI 1 MI 2 MIs

1 MI 1 MI 1 MI 1 MI 1 MI

1 MI 2 MIs 1 MI 2 MIs 1 MI

1 MI 1 MI 1 MI 2 MIs 1 MI

van Neerven ’86; Gonsalves ’86; Fleischer, Kotikov, Veretin ’99; Davydychev, Kalmykov ’03; Aglietti, Bonciani. ’03-’04 ....
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List of Master Integrals for the real radiation

2 cuts MIs

2 cuts Masters with one massive propagator:

1 MI 1 MI 1 MI 1 MI 1 MI

p1 p2

p2 p1
1 MI

p1 p2

p2 p1
1 MI

p1 p2

p2 p1
1 MI

p1 p2

p2 p1

2 cuts Masters with two massive propagators:

2 MIs 3 MIs 2 MIs 1 MI 1 MI

p1 p2

p2 p1
2 MIs 1 MI 1 MI

2 cuts Masters with three massive propagators:

4 MIs 1 MI 1 MI

p1 p1

p2 p2
1 MI 1 MIs 1 MI

p1 p2

p2 p1

Some of them have been calculated by Anastasiou and Melnikov(’02).

Bonciani and Pan, in preparation
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List of Master Integrals for real radiation

The masters with 3-cut

Master1 Master2

(p1−k1)
2

Master3 Master4 Master5 Master6

Master7

p1 p2

p2 p1

Master8

p1 p2

p2 p1

Master9

p1 p2

p2 p1

Master10 Master11

A dot on the propagator line means that the propagator is raised to power 2. Bold lines

represent a massive propagator. Thin lines denote massless propagators.
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Differential Equations for the MIs

Expression of the observable (modulus squared of the amplitude) in terms of (many)

dimensionally regularized scalar integrals

Use of the Cutkosky rules for the phase-space integrals (in order to use the same

technique as for the virtual corrections)

Generation of Integration-by-Parts Identities (IBPs) and solution of the corresponding

algebraic system. Ouput: relations that link scalar integrals to Master Integrals (MIs)

Calculation of the MIs: generation of the system of first-order linear differential equations

Solution of the system in Laurant series of (D − 4). Coefficients of the series expressed

in terms of Harmonic Polilogarithms (HPLs) or related functions
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Differential Equations for the MIs

For a given topology, when the system of identities is not reducible, we have a (hopefully) small

number of independent integrals called MI. In the case of three-point functions:

Fi(Q
2, p21, p

2
2) =

∫

dDk1d
Dk2

Sn1
1 · · ·S

nq
q

Dm1
1 · · ·Dmt

t

Using all the identity-relations (IBP’s, LI, Sym) we can construct the following system of first-order

linear differential equations:

dFi

dQ2
=

∑

j

hj(Q
2,m2) Fj +Ωi

where i, j = 1, ...,NMIs.

Ωi

This term involves integrals of the class It−1,r,s (sub-topologies) to be

considered KNOWN

V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.
E. Remiddi, Nuovo Cim. 110A (1997) 1435.
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Example of the reduction

Example of the IBPs for one reducible topology with 3 cuts

= G1(z,D)

Master3

+ G2(z,D)

Master1

+ G3(z,D)

Master2

(p1 − k1)
2

Example of the DIFF for the MIs with 3 cuts

∂

∂z

Master3

= F1(z,D)

Master3

+ F2(z,D)

Master1

+ F3(z,D)

Master2

(p1 − k1)
2

where z = M2/s. The functions Gi, Fi are known directly from the reduction process.

Calculation of the MIs

Master1 have to be integrated directly.

Master3 and Master2 can be calculated using the differential equations method.

The constants of integration can be found imposing the initial condition (regularity at

z → 1).
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The solution of the base Master with three-cut

The basic MIs with three cuts

Using the optical theorem, we can relate the cut diagrams to the imaginary part of

the loop integral:

2 Im =

Master1

Extracting the imaginary part from the loop integral and using the relevant Kummer

relation for the hypergeometric function, we find:

= N

[

(z)−1+2ǫ(−π)
Γ(1− ǫ)3

Γ(ǫ)2Γ(3− 3ǫ)Γ(2− 2ǫ)
(1− z)3−4ǫ

2F1(1− ǫ, 2− 2ǫ, ǫ, z)

+(z)ǫ(−π)
Γ(−1 + ǫ)Γ(1− ǫ)ǫ

Γ(2− 2ǫ)Γ(1 + ǫ)Γ(ǫ)
(1− z)3−4ǫ

2F1(3− 3ǫ, 2− 2ǫ, 2− ǫ, z)

]

N a nomalization factor.It’s important to extract the (1− z)3−4ǫ part. It will be explained by the

following example.
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Harmonic Polylogarithms (HPLs)

Weight = 1

H(0, x) = ln x H(−1, x) =

∫ x

0

dt

1 + t
= ln (1 + x) H(1, x) =

∫ x

0

dt

1− t
= − ln (1− x)

Weight > 1

If ~a = ~0 we define H(~0, x) = 1
ω!

lnω x. If ~a 6= ~0:

H(~a, x) =

∫ x

0

dt f(a1, x)H(~aω−1, t)
d

dx
H(~a, x) = f(a1, x)H(~aω−1, x)

The Algebra: ω~a × ω~b = ω~a × ω~b

H(~a, x)H(~b, x) =
∑

~c=~a⊎~b

H(~c, x)

Integration by Parts

H(m1, ...,mq , x) = H(m1, x)H(m2, ...,mq , x)− ...+ (−1)q+1H(mq, ...,m1, x)

Connection with Nielsen’s polylog and Spence functions:

Sn,p(x) = H(~0n,~1p, x) Lin(x)=H(~0n−1, 1, x)

A.B.Goncharov, Math. Res. Lett. 5 (1998), 497-516.

E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725.

FCPPL March 28 2013, Nanjing, China – p. 23/28



The solution of non-divergence factor Master3

Using threshold condition to constrain the integral constants.

z = 1 is the threshold for the Z/W boson production, the integrals vanish in D

dimension:

(z = 1) = 0

The solution of the Master3.

= N
iπ

a2
z(1− z)4ǫ

[

1

ǫ2

(

H(0, z))−
1

ǫ

(

H(0, 0, z)

2
+H(1, 0, z) + ζ(2)

)

+
H(0, z)

2
ζ(2)−

H(0, 0, 0, z)

4
−H(0, 0, 1, z)−

H(0, 1, 1− z) ∗H(0, z)

8
−

H(0, 1, 1− z)

2

+
H(1, 0, 0, z)

2
+

ζ(3)

4
+O ((D − 4)

]
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Example of solving Master8

The threshold condition

z = 1 is the threshold for the Z/W boson production, the integrals vanish in D

dimensions:
p1 p2

p2 p1

(z = 1) = 0

The behavior of the (1− z)−1+aǫ.

(1− z)−1+aǫ =
δ(1− z)

aǫ
+ aǫ

[

1

1− z

]

+

+
(aǫ)2

2!

[

(1− z)

1− z

]

+

+
(aǫ)3

3!

[

(1− z)2

1− z

]

+

+O
(

(ǫ4)
)

If this term expanded at D = 4 dimension will give a soft divergence, It will be cancelled

by the virtual singularity. Moreover when solving the differential equations and z = 1, it

should be extract before expanding in ǫ. Otherwise We cannot constrain the integral
constant.
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Example of solving Master8

The differential equation of the Master8

∂

∂z

Master8

p1 p2

p2 p1

= F1(z,D)

Master8

p1 p2

p2 p1

+ F2(z,D)

Master7

p1 p2

p2 p1

+ F3(z,D)

Master1

+ F4(z,D)

Master2

(p1−k1)
2

the solution of the Maser8

p1 p2

p2 p1

= z3(1− z)−1−2ǫ

[

1

ǫ3

(

1

2
−

δ(1− z)

2

)

+
1

ǫ2

(

−H(0, z)−
H(1, z)[1− z]+

2

)

+
1

ǫ

(

3H(0, 0, z)

2
+

H(0, 1, z)

2
+

H(1, 0, z)

2
+

H(1, 1, z)[1− z]+

2
− ζ(2) + ζ(2)δ(1− z)

)

+
15H(0, z)

8
ζ(2)−

15H(0, 0, 0, z)

8
−H(0, 0, 1, z)−

9H(0, 1, 0, z)

8
−

H(0, 1, 1, z)

2

−
H(0, 1, 1, z)

2
[1− z]−

H(1, z)ζ(2)

8
−

3H(1, 0, 0, z)

8
−

H(1, 0, 1, z)

2
−

5H(1, 1, 0, z)

8

−
H(1, 1, 1, z)[1− z]+

2
+ ζ(2)[1− z]+

13ζ(2)

8
−

5ζ(3)δ(1− z)

4
+O ((D − 4)

]
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Conclusions

I summarized the importance of an accurate theoretical prediction for the Drell-Yan

production of Z and W bosons at hadron colliders, and the status of the radiative

corrections

I reviewed the method for the analytic calculation of Feynman diagrams, based on the

reduction to the Master Integrals via the “Laporta algorithm” and their calculation with the

“differential equations method”

I focused on the QCD-EW mixed radiative corrections. I summarized the calculation of
the virtual corrections. I then focused on the calculation of the real radiation, needed to
complete the NNLO corrections. I performed the reduction to the MIs using the method

based on the Cutkowsky rules. I finished all the differential equation of Z boson

production and am now working to the 3-cut solution of the corresponding differential

equations of the W boson production.
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Thank you for your attention
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