e⁺e⁻ results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

(IHEP-LAL collaboration)

Liangliang WANG

中國科學院為能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Outline

>Introduction to hadronic vacuum polarization

>ee→hadrons results from BaBar

>Status of muon (g-2) prediction

 $> \tau$ mass measurement at BESIII

≻summary

IHEP-LAL collaboration

Michel DAVIER Bogdan MALAESCU ZHANG Zhiqing YUAN Changzheng MO Xiaohu WANG Ping

WANG Liangliang (co-PhD thesis defended 2009) Precision measurement of $e^+e^- \rightarrow \pi^+\pi^-$ cross section using ISR method at BaBar

[+A. Höcker (CERN), G. Lopez Castro, G. Toledo (Mexico)]

Hadronic vacuum polarization and R

The ISR method at BABAR

- High energy ($E_{\gamma}^* > 3$ GeV) detected at large angle \rightarrow defines $\sqrt{s'} = E_{CM}$ and provides strong background rejection
- Event topology: ISR photon back-to-back to hadrons
- → high acceptance, strong boost to hadrons (measurements from threshold and easier PID)
- Final state can be hadronic or leptonic (QED) $\rightarrow \mu^+\mu^-\gamma(\gamma)$ events used to get ISR luminosity
- Kinematic fit including ISR photon
 → removes multihadronic background; improves mass resolution (a few MeV)
- Continuous measurement from threshold to 3-5 GeV
 - →reduces systematic uncertainties compared to multiple data sets with different colliders and detectors

The BaBar ISR program

- cover the almost complete set of significant exclusive e⁺e⁻ annihilation channels up to 2 GeV
- published:

```
 \begin{array}{l} \pi^{+}\pi^{-} \quad (\text{topic of my phD thesis}) \\ \pi^{+}\pi^{-}\pi^{0} \\ 2(\pi^{+}\pi^{-}), \ K^{+}K^{-}\pi^{+}\pi^{-}, \ K^{+}K^{-}2\pi^{0}, \ 2(K^{+}K^{-}) \\ K^{0}{}_{S}K^{+-}\pi^{-+}, \ K^{+}K^{-}\pi^{0}, \ K^{+}K^{-}\eta \\ 2(\pi^{+}\pi^{-})\pi^{0}, \ 2(\pi^{+}\pi^{-})\eta, \ K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}, \ K^{+}K^{-}\pi^{+}\pi^{-}\eta \\ 2(\pi^{+}\pi^{-}), \ 2(\pi^{+}\pi^{-}\pi^{0}), \ 2(\pi^{+}\pi^{-}) \ K^{+}K^{-} \\ \Phi \ f^{0}(980) \\ p \ p \\ \Lambda \ \Lambda, \ \Lambda \ \Sigma 0, \ \Sigma 0 \ \Sigma 0 \end{array}
```

PRL 2009; PRD 2012 PRD 2004 PRD 2007; PRD 2012; PRD 2012 PRD 2005; PRD 2008 PRD 2007 PRD 2006 PRD 2006; PRD 2007 PRD 2006, PRD 2012 PRD 2007

- New (Preliminary) results at this workshop: K⁺ K⁻
- in progress:

 $\pi^{+} \pi^{-} 2\pi^{0}, \ \ \text{K}^{0}_{\ \ \text{S}} \ \ \text{K}^{0}_{\ \ \text{L}} \ , \ \ \text{K}^{0}_{\ \ \text{S}} \ \ \text{K}^{-} \pi^{-}, \ \ \text{K}^{0}_{\ \ \text{S}} \ \ \text{K}^{--} \pi^{-+} \pi^{0}, \ \ \text{K}^{0}_{\ \ \text{S}} \ \ \text{K}^{+-} \pi^{-+} \eta$

QED Test with $\mu\mu\gamma$ sample

- absolute comparison of μμ mass spectra in data and in simulation (AfkQed based on EVA)
- simulation corrected for data/MC efficiencies
- AfkQed corrected for incomplete NLO using Phokhara
- strong test (ISR probability drops out for $\pi\pi$)

Results on $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

New results on $e^+e^- \rightarrow K^+K^-(\gamma)$ (to be published)

 \rightarrow Use effective ISR luminosity obtained with $\mu\mu$ sample.

New results: $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

published in 2012, based on 454 fb⁻¹ (previous publication on 89 fb⁻¹)

New results: $e^+e^- \rightarrow K^+ K^- \pi^+\pi^-$, $K^+K^- \pi^0\pi^0$

published in 2012 based on the full BABAR statistics (454 fb⁻¹) \rightarrow huge improvement compared to existing data

• $J\!/\psi$ clearly visible

- $\bullet\,$ resolution: 8.8 $11.2\,\mathrm{MeV}$
- $J\!/\psi$ clearly visible

Cross sections dominated below 1.8 GeV by $K^*(892)^0 K^{+-} \pi^{-+}$ (large) and $K^*(892)^{+-} \pi^{-+} \pi^0$ important to know resonance dynamics to estimate unmeasured final states for g-2 integral

more multihadrons

Muon magnetic moment anomaly

LO Hadronic Contribution $a_{\mu}^{had,LO}$

Relative Contribution of Input Data vs Energy

- Energy region 0.6-0.9 GeV dominates in both value and uncertainty
- \rightarrow 2 π channel contributes more than 70%
- → The e+e- data precision (was) limited
- → Use (complement with) tau data
 Alemany, Davier, Hoecker 1998

HVP: τ Data through CVC – SU(2)

Hadronic physics factorizes (spectral Functions)

$$\sigma^{(l=1)} \left[e^+ e^- \to \pi^+ \pi^- \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right]$$
$$\upsilon \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right] \propto \begin{bmatrix} \mathsf{BR} \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right] \\ \mathsf{BR} \left[\tau^- \to e^- \overline{\upsilon_e} \upsilon_\tau \right] \\\mathsf{BR} \left[\tau^- \to e^- \overline{\upsilon_e} \upsilon_\tau \right] \end{bmatrix} \begin{bmatrix} 1 \\ \mathsf{N}_{\pi\pi^0} \\\mathsf{ds} \end{bmatrix} \begin{bmatrix} m_\tau^2 \\ \left(1 - s/m_\tau^2 \right)^2 \left(1 + s/m_\tau^2 \right) \\\mathsf{ds} \end{bmatrix}$$
branching fractions mass spectrum kinematic factor (PS)

Updated ALEPH Spectral Functions

- > Problem identified for the publicly available ALEPH $\pi\pi^0$ covariance matrix: treatment of the statistical correlations from the unfolding
- > Redone unfolding of the $\pi\pi^0$, $\pi 2\pi^0$, $\pi 3\pi^0$, $3\pi\pi^0$ and 3π spectral functions, using the same method as in BaBar:
 - \rightarrow iterative unfolding (MC truth reweighting) with regularization

 \rightarrow provides a result with small systematic uncertainties (tested through a data-driven method) and full information on uncertainties and correlations

 \rightarrow allows for an improved treatment of structures (reduced effects of the regularization) comparing to the SVD method used before

Updated spectral functions to be released soon

g-2 with updated unfolding (ALEPH τ)

Previous:	M. Davier et al. Eur. Phys. J. C 66 , 127 (2010).									
Experiment	$a_{\mu}^{\text{had,LO}}[\pi\pi,\tau] \ (10^{-10})$									
	$2m_{\pi^{\pm}} - 0.36\mathrm{GeV}$	$0.36-1.8{ m GeV}$								
ALEPH	$9.46 \pm 0.33_{\rm exp} \pm 0.05_{\mathcal{B}} \pm 0.07_{\rm IB}$	$499.19 \pm 5.20_{\rm exp} \pm 2.70_{\mathcal{B}} \pm 1.87_{\rm IB}$								
CLEO	$9.65 \pm 0.42_{\rm exp} \pm 0.17_{\mathcal{B}} \pm 0.07_{\rm IB}$	$504.51 \pm 5.36_{\mathrm{exp}} \pm 8.77_{\mathcal{B}} \pm 1.87_{\mathrm{IB}}$								
OPAL	$11.31 \pm 0.76_{\rm exp} \pm 0.15_{\mathcal{B}} \pm 0.07_{\rm IB}$	$515.56 \pm 9.98_{\rm exp} \pm 6.95_{\mathcal{B}} \pm 1.87_{\rm IB}$								
Belle	$9.74 \pm 0.28_{\rm exp} \pm 0.15_{\mathcal{B}} \pm 0.07_{\rm IB}$	$503.95 \pm 1.90_{\rm exp} \pm 7.84_{\mathcal{B}} \pm 1.87_{\rm IB}$								
Combined	$9.76 \pm 0.14_{\rm exp} \pm 0.04_{\mathcal{B}} \pm 0.07_{\rm IB}$	$505.46 \pm 1.97_{\rm exp} \pm 2.19_{\mathcal{B}} \pm 1.87_{\rm IB}$								

New:

ALEPH	9.82 ± 0.40 _{exp}	501.32 ± 4.97 _{exp}
Combined	9.80 ± 0.13 _{exp}	506.65 ± 1.89 _{exp}

→ Small changes in physics results (QCD & g-2) due to the updates in the unfolding

Impact of BABAR data for g-2: $\pi^+\pi^-$

Weights of different experiments in combining their results (DHMZ 2009-2010

BABAR dominates everywhere, except between 0.8 and 0.93 GeV where KLOE is the most precise

Integral from threshold to 1.8 GeV

BABAR most precise (with CMD-2) reduces tension between e^+e^- and τ

Impact of BABAR data for g-2: other channels

a_{μ}^{LO} [0.98,1.8]GeV (10⁻¹⁰)

channels	All results but BaBar 2012	BaBar
K⁺K⁻	21.63±0.27 _{stat} ±0.68 _{syst} (3.4%)	22.95±0.14 _{stat} ±0.22 _{syst} (1.1%)
2 (π ⁺ π ⁻)	$13.35 \pm 0.10_{ m stat} \pm 0.52_{ m syst}$ (4.0%)	$13.64 \pm 0.03_{stat} \pm 0.36_{syst}$ (2.6%)

Status of a_µ

► E-821 updated result* (11 659 208.9 \pm 6.3) 10⁻¹⁰

▶ Including latest BaBar 4π ; $2K2\pi$ and $2K2\pi^0$ results in the e+e- combination + latest QED calculation (Kinoshita et al.) yields**

 $a_{\mu}^{SM}[e+e-] = (11\ 659\ 180.4\ \pm4.1\ \pm2.6\ \pm0.2)\ 10^{-10}$

HVP LBL EW (±4.9)

- ✓ Deviation (ee) $(28.5 \pm 8.0) \ 10^{-10}$ (3.6 σ)
- Including latest update of the τ analysis+Belle +revisited IB corrections
- ✓ Deviation (τ) (20.7 ± 8.3) 10⁻¹⁰ (2.5 σ)
- * new project at Fermilab & JPARC to improve accuracy by a factor 4

** new data from KLOE (2012), and more from VEEP-2000, BESIII in future...

Precision measurement of \tau mass at BESIII

 \succ Why high precision τ mass measurement?

➢Method

Beam energy measurement system

➤Scan optimization

➢ First round of scan

Why high precision au mass measurement

Elementary parameter in SM (PDG2012)

Lepton universality testing

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \to e \,\nu_{e} \nu_{\tau})}{B(\mu \to e \,\nu_{e} \nu_{\mu})} \left(1 + \Delta_{e}\right)$$

 g_{τ} and g_{μ} : coupling constants; τ_{τ} and τ_{μ} :life time of τ and μ ; $B(\tau \rightarrow ev_e v_{\tau})$ and $B(\mu \rightarrow ev_e v_{\mu})$: decay branching ratio; Δ_e :correct factor (phase factor, radiative correction factor of QED, correct factor of propagator of W-meson etc.)

Method: Pseudo-mass and threshold scan

τ lepton mass measurement [value+statistic + systematic error]	Year	Ex. Group	Data sample	Method
$1776.68 \pm 0.12 \pm 0.41$	2009	Babar	423 fb ⁻¹	Pseudo- mass
$1776.81(^{+0.25}_{-0.23}) \pm 0.15*$	2007	KEDR	6.7 pb ⁻¹	Scan
$1776.61 \pm 0.13 \pm 0.35$	2007	Belle	414 fb ⁻¹	Pseudo- mass
$1776.96 {}^{+0.18}_{-0.21} {}^{+0.25}_{-0.17}$	1996	BES	5.1 pb ⁻¹	Scan

* an infra-red Compton backscattering technique (CBS)

Threshold scan

Fit the observed $\tau \tau$ cross section around threshold: $\sigma^{obs}(W, m_{\tau}, \varepsilon, \sigma_{B}) = \varepsilon \cdot \sigma(W) + \sigma_{B}$ $= N^{obs}/L$

> Three free parameters (m_{τ} , ε , σ_{B}): at least 3 energy points => optimization of data taking

- Luminosity measurement
- Energy measurement
- > Energy calibration (energy spread) from J/ ψ , ψ ' scan
- > Theoretical uncertainty (0.1%)

optimization of data taking

Chin. Phys. C 2009, 33:501-507

▶ three energy points
 Point 1: at the large derivative region (m_τ), L₁=67.5%L_{tot}
 Point 2: above the threshold (ε), L₂=22.5%L_{tot}
 Point 3: bellow the threshold (σ_B), L₃=10%L_{tot}

 ▶ δM~1/L_{tot}

 \succ if only eµ events are used:

τ scan plan

First circle:
 J/ψ scan (7 pts) → τ scan (5 pts) → ψ' scan (7 pts)
 Second circle:

J/ ψ scan (7pts) $\rightarrow \tau$ scan (pt.9&10) $\rightarrow \psi$ 'scan (7 pts)

Final uncertainty (sta. ⊕ sys.)< 0.1MeV

τ scan in December 2011

Job	Beam	Begin	Begin time	End	End time	Int. <u>lum</u> .]
	energy	Run		Run		(<u>pb</u> ⁻¹)	
	(MeV)	number		number			
J/ <u>psi</u>	1544.0	24937	2011/12/22;	24978	2011/12/23;	1.428	
scan	1547.7		10:40:12		10:01:35		
	1548.1						
	1548.5						
	1548.9						
	1549.3						
	1552.0						
Energy	1771.0	24984	2011/12/23;	25015	2011/12/24;	4.035	1
points			13:12:26		14:47:46		
for <u>tau</u>	1776.9	25019	2011/12/23;	25094	2011/12/26;	4.914]
scan			18:24:10		08:32:34		24.75 sh-1
	1780.4	25098	2011/12/26;	25141	2011/12/27;	3.671	21.75 po -
			09:46:24		09:38:34		
	1800.0	25142	2011/12/27;	25243	2011/12/29;	9.056]
			10:26:46		08:48:20		
psi'	1838.0	25244	2011/12/29;	25337	2011/12/31;	7.245	
scan	1841.9		09:04:32		02:31:32		
	1842.5						
	1843.1						
	1843.8						
	1844.5						
	1847.0						

Luminosity measurements

Using Bhabha and di-gamma events

	Scan point	N_2^{obs}	N_1^{obs}	$L_{bhabha} \ (nb^{-1})$	N^{obs}	$L_{digamma} \ (\mathrm{nb}^{-1})$
	1	1575827	58018	4502.89	74240	4252.17
au	2	2043538	75371	5877.14	96570	5566.82
	3	1413321	52432	4082.30	67192	3889.29
	4	3411037	126081	10068.29	161482	9553.18
	1	38143	1393	81.79	1804	78.52
	2	114205	7191	239.19	5016	219.26
	3	137995	21744	260.07	5557	243.13
J/ψ	4	109972	17947	206.00	4718	206.55
	5	116221	15593	225.34	5104	223.53
	6	106130	10079	215.17	4950	216.87
	7	150860	6618	324.23	7218	317.31
	1	269201	9878	830.58	12763	787.04
	2	284362	10995	879.30	13291	823.10
	3	285762	12775	878.75	13432	832.47
ψ'	4	414291	20998	1266.84	19097	1184.34
	5	565681	27641	1734.27	26761	1660.77
	6	265322	11889	817.48	12366	767.97
	7	501530	19215	1559.59	23624	1470.75

Beam energy measurement for BEPCII

J/ψ , ψ ' scan

	J/ψ	3096.916 ± 0.011	ψ'	3686.09 ± 0.04
Lumi.	di-gamma	Bhabha	di-gamma	Bhabha
$M(MeV/c^2)$	3097.022 ± 0.063	3097.070 ± 0.083	3686.229 ± 0.107	3686.243 ± 0.108
$\Delta_E(\mathrm{MeV})$	1.086 ± 0.055	1.109 ± 0.029	1.556 ± 0.060	1.567 ± 0.058
ϵ	$(67.29 \pm 1.69)\%$	$(65.76 \pm 1.56)\%$	$(84.83 \pm 2.65)\%$	$(79.85 \pm 2.47)\%$
$\chi^2/ndof$	2.48/3	3.05/3	6.17/3	5.21/3
Δm	0.106 ± 0.064	0.154 ± 0.084	0.139 ± 0.114	0.153 ± 0.115

Event selection

PID	<i>p</i> (GeV/c)	EMC		TC	DF				MU	С			other
e	p_{min}	0.8 < E/p < 1	1.05	$ \Delta tof(\epsilon) $	$\Delta tof(e) < 0.2$								
				0 < to j	f <4.5	5							
μ	p_{min}	<i>E/p</i> <0.7	'	$ \Delta tof(\mu$	$\iota) <0$).2 (0	lepth	>80>	<p-50< td=""><td>or de</td><td>pth ></td><td>>40)</td><td></td></p-50<>	or de	pth >	>40)	
		0.1 < E < 0.1	.3					and <i>i</i>	numh	vits >	1		
π	p_{min}	E/p < 0.6)	$ \Delta tof(\pi$	$ \tau) < 0$	0.2	Dort	iali	info	rm	otic	n	not μ
				0 < to j	f <4.5	5	rania momation,					л,	
K	p_{min}	E/p < 0.6		$ \Delta tof(k) $	X < 0).2	not the full list !						not μ
				0 < to j	f <4.5	5							
	P_{T}	$(\vec{P_1} + \vec{P_2})_T$		The detection efficiency for different									
P'_{2}	$TEM = \frac{1}{E_{miss}^{max}} = \frac{1}{W}$	$\frac{(\vec{r}_1 + \vec{r}_2)T}{- \vec{P_1} - \vec{P_2} }$		final states at different scan points									
N	p good photon: N =(Efficiency (%)										
G	Good photon:		SCa	an point	ee	$e\mu$	eh	$\mu\mu$	μh	hh	$e\rho$	$\mu \rho$	πho
1)	0 <tdc<14, (unit:="" 50<="" td=""><td></td><td>2</td><td>17.1</td><td>21.8</td><td>32.4</td><td>14.2</td><td>15.3</td><td>25.6</td><td>9.9</td><td>5.5</td><td>9.1</td></tdc<14,>		2	17.1	21.8	32.4	14.2	15.3	25.6	9.9	5.5	9.1	
2)	$ \cos\theta < 0.8$, E>25N		3	17.6	23.2	34.9	14.0	16.9	29.3	10.4	6.1	8.9	
(3) (4)	0.84< cosθ <0.92 θvc >20		4	17.8	23.1	36.2	13.9	17.7	34.5	10.8	5.3	12.8	

data vs MC

final state	1		2	2		3		4	to	otal	
iniai state	Data	MC	Data	MC	Data	MC	Data	MC	Data	MC	
ee	0	0	4	3.7	13	12.2	84	76.1	101	91.9	
$e\mu$	0	0	8	9.2	35	31.3	168	192.7	211	233.1	Total
$e\pi$	0	0	8	8.6	33	29.6	202	184.5	243	222.7	i dai
ek	0	0	0	0.5	2	1.8	10	16.9	18	19.3	consistency
$\mu\mu$	0	0	2	2.9	8	Pa	49	56.3	59	68.4	is fairly well!
$\mu\pi$	0	0	4	3.9	11	4.0	89	86.7	104	104.7	
μk	0	0	Ø	0.2	3	0.8	7	9.0	10	10.1	
$\pi\pi$	0	0		2.0	5	7.7	57	54.0	63	63.8	
πk	ø	0	51	0.3	0	0.8	10	8.2	11	9.3	
kk	0	0	0	0.0	1	0.1	1	0.3	2	0.4	
$e\rho$	0	0	3	6.1	19	20.6	142	132.0	164	158.7	Data 1171
μho	0	0	8	3.3	18	11.8	52	62.3	68	78.5	
$\pi \rho$	0	0	5	3.4	15	10.8	97	96.0	117	110.2	
Total	0	0	44	44.2	153	150.8	974	976.1	1171	1171.1	

τ mass

Summary

> ISR project at BaBar:

dominant contributions to the world averages of σ (ee \rightarrow hadrons) bellow 1.8GeV

- > Updates ALEPH τ spectral function: small impact on physics
- Previous τ/ee disagreement strongly reduced:
 2.9σ(2006) → 2.4σ(τ update) → 1.5σ(including BaBar-2π);
 1.8σ(including the 2010 KLOE 2π)
- > Evidence for a_{μ} deviation between exp. and SM prediction (2~4 σ): not sufficient to establish new physics, but more results coming from both sides
- First round of τ mass scan done at BESIII: good result to be released
- ✓ The collaboration between IHEP and LAL is quite active and fruitful !