Evidence for Higgs using $H \rightarrow WW^* \rightarrow |v|v$ decay mode in the ATLAS detector at LHC

FCPPL team(2012) LAL NJU/IHEP Zhiqing Zhang Shenjian Chen Sebastien Binet Shan Jin Xifeng Ruan (Joint PhD -> Postdc) Yichen Li (Joint PhD)

FCPPL HWW

Outline

- Introduction
- The evidence
- Our main contribution
- Future plan

Higgs Production

- Higgs is predicted by Standard Model of particle physics, who gives mass to all other massive particles.
- Production mechanisms:

H→WW decay

- Higgs has several main decay channels:
- ♦ $H \rightarrow WW^* \rightarrow |v|v$ channel covers a wide m_H range.
- HWW Decay Product:
 - Two high energy leptons
 - Missing energy(denoted as E_T^{miss}) due to invisible nutrinos

Background Processes

- * $t\bar{t}$ and Wt: $t/\bar{t} \rightarrow W^+/W^-+b/\bar{b}$
- Non resonant WW production
- W+jets: one jet might be recognized as a lepton
- ⋆ Z/γ^{*}+jets: Z/γ^{*}→l⁺l⁻, fake E_T^{miss} from fail reconstructed jets
- WZ, W γ and W γ^* : one lepton of three is not well constructed.
- ♦ ZZ: Z $\rightarrow l^+ l^-$

Event Selection I

- Cuts are designed to filter those backgrounds, while keeping the signal.
- Two high energy opposite sign leptons. Suppress W+jets.
- Low m_{ll} cut, suppress low mass γ^* +jets
- * Z veto: requiring m_{ll} far away from m_Z , suppress Z+jets
- Low $E_{T,rel}^{miss}$ and $P_{T,rel}^{miss}$ cut, suppress Z/ γ^* +jets

Event Selection II

- The analysis is further divided into 3 sub-channels according to the jet multiplicity. (since the backgrounds composition are different in each jet channel)
- Outs special to each sub-channel:
- Cuts common to each sub-channel:
 - Upper cut for m_{ll}
 - Small $\Delta \varphi_{ll}$ (spin correlation)

Signal	ggF 125 GeV	VBF 125 GeV
0 jet	60.8%	8.5%
1 jet	26.8%	37.7%
2 jets	13.1%	54.4%

2013/3/27

Background determination

- General idea: use data whenever possible
- W+jets: fully data-driven
- WW, top, Z+jets use Control regions to fix the MC with the NF
- WZ/ZZ/W γ^* , small contribution, MC based

The Evidence: m_T distribution

* m_T distribution of the final selected sample of all jet multiplicity channels.(input for the fit)

The Evidence: Statistical Conclusion I ——Production Rate

- ♦ After combining 2011 and 2012 data, an excess of events over the expected background is observed for $m_H \leq 150$ GeV with the largest significance of 4.1 standard deviations($p_0 = 2 \times 10^{-5}$) at $m_H = 140$ GeV. The signal significance at $m_H = 125$ GeV is 3.8 standard deviations($p_0 = 8 \times 10^{-5}$).
- the best fit signal strength at m_H = 125 GeV is μ = 1.01 \pm 0.31.

The Evidence: Statistical Conclusion II ——Spin Properties

- ✤ Two hypothesis have been compared, using only 2012 data: the standard model Higgs with $J^P = 0^+$, and graviton like tensor with minimal couplings with $J^P = 2^+$
- The tested 2⁺ hypothesis is excluded in favour of a 0⁺ hypothesis at a confidence level which varies between 99% for f_{qq} = 100% and 95% for

Main contribution: top Ojet estimation

In the top background estimation in Ojet channel, the so-called JVSP method is used.

$$N_{\text{Top_0jet}}^{estimated} = N_{top_all}^{\text{Data}} \times f_{0j}^{MC} \times \left(\frac{f_{0\ prob.\ jet}^{Dtag,Duta}}{f_{0\ prob.\ jet}^{Btag,MC}}\right)$$

- $N_{Top_0jet}^{estimated}$ is the top event with 0 jet and $N_{top_all}^{Data}$ is the top events with all jets
- f_{0i}^{MC} is the JVSP----Jet Veto Survival Probability, calculated in simulation.(figure 10 left)

 $f^{Btag,Data}$

- $\left(\frac{f_{0\ prob.\ jet}}{f_{0\ prob.\ jet}^{Btag,MC}}\right)$ is a correction applied to f_{0j}^{MC} , derived from a b-tagged top control region.
- $f_{0 prob. jet}^{Btag,Data} \text{ or } f_{0 prob. jet}^{Btag,MC}$ is the fraction of event with no probing jet in data/MC(figure 10 right)
- Probing jet is defined as jets in event with a distance from the b-jet $\Delta R > 1$.

Main contribution: top Ojet estimation

 \diamond Main experimental systematics(only those varied large than 1%):

Experiamental Systematic s	Variation(%)
BJetWeight	-3.1/+4.4
BJetEnergyScale	-2.0/+2.4
FlavRespJetEnergyScale	+1.0/-1.1

Theoretical systematics(this is the main systematics in top Oj estimate)

Theoretical Systematics	Variation(%)
Renormalization and Factorization scale(LO, old)	7.5
Sintle top-t \overline{t} interference(LO,old)	4.5
Initial/final state radiation	4.0
MC generator/parton shower+hadronization	< 2.2

Total systematics: 11.4%

Main contribution: b-tagged sample dependency of top Ojet estimation

 To check the influence of b tagging on the top Ojet estimation, results are compared by using two top control samples: one sample requiring at least one b-jet, the other sample requiring exactly one b-jet.

- * Results data/MC: $1.064 \pm 0.052(=1b-jet) \ 1.035 \pm 0.046(\ge 1b-jet)$
- Conclusion: the data/MC ratio is stable wrt. the b-jet control sample.

Main contribution: on-going improved theoretical uncertainty reevaluation

- Renormalization and Factorization scale uncertainties and single topttbar interference uncertainty are being reevaluated using MCatNLO.
- Here are some performance plots of the reevaluation.

Main contribution: on-going improved theoretical uncertainty reevaluation

• Systematic Table of the value of $\frac{f_{0j}^{MC}}{(f_{0\ prob\ iet}^{MC})^2}$ for different choice of the

Renormalization(RF) and Factorization(FF) factors.

	FF=0.5	FF=1	FF=2
RF=0.5	0.5040±0.0021	0.5132±0.0022	0.5172±0.0023
	(-0.8±0.4)%	(+1.0±0.4)%	(+1.8±0.4)%
RF=1	0.5050±0.0020 (-0.6±0.4)%	0.5080±0.0020	0.5101±0.002 (+0.4±0.4)%
RF=2	0.5027±0.0019	0.5080±0.0019	0.5048±0.0019
	(-1.1±0.4)%	(<0.1±0.4)%	(-0.6±0.4)%

- The maximum variation is chosen to be the systematic err: 1.8%
- Single top-t \bar{t} interference uncertainty(Diagram Subtraction(DS) vs. Removal(DR))

	DS	DR
$\frac{f_{0j}^{MC}}{(f_{0\ prob\ jet}^{MC})^2}$	0.5080±0.0020	0.5098±0.0019 (+0.4±0.4)%
	estimation	

Main contribution: Low pt Analysis

- An estimation of the significance gain is done using the same sets of cuts as nominal analysis for the OF 0/1 jet channel.
- The formula of the significance calculation.
 - Iowpt+nominal significance(no correlation):

$$sig = \frac{S_{lowpt} + S_{nominal}}{\sqrt{B_{lowpt} + B_{nominal} + \delta_{B_{lowpt}}^{2} + \delta_{B_{nominal}}^{2}}}$$

 uncertainty of background is assumed to be the same in lowpt and nominal analysis

Main contribution: Low pt Analysis

 Results: Significance gain distributions are show below for OF 0/1 jet channel. Low pt alone significance is also show for comparison

Significance gain: 12.5%(14.0%) for 0(1) jet

Future plan: New FCPPL and New Program

We have new team this year:

New FCPPL team(2013)	
LAL	NJU/USTC
Zhiqing Zhang	Shenjian Chen
Sebasien Binet	Yingchun Zhu
Yichen Li(joint PhD)	

The new program in the future:

2013/3/27

New Programs	
1.Low Pt Analysis	Re-optimize selection cuts
	Use multivariate technique
	Improve background rejection
2.Perform Higgs property measurement	
3.Search for heavy neutral Higgs boson in the WW channel	
	FUPPLEIVVV

That's all! Thank you!

2013/3/27

FCPPL HWW

20

Back up: sub-threshold b-jet veto

- An attempt of applying sub-threshold b-jet veto cut to further suppress top background in the signal region is made.
- Three cases are considered:
 - MV1 algorithm working at 85%
 - MV1 algorithm working at 75%
 - JetCombNN algorithm working at 80%

Back up: sub-threshold b-jet veto

Top reduction rates: the fraction of top events excluded by sub-threshold b jet veto

Fake rate: the fraction of non-top events in the events excluded by sub-threshold b veto

Back up: sub-threshold b-jet veto

Conclusion:

- Sub-threshold b jet veto is more efficient in Ojet channel than in 1jet channel.
- All three b veto cases share almost the same ability of top reduction.
- \diamond The MV1_75 has the smallest fake rate.