R&D on BES-III Inner Tracker using CMOS Pixel Sensors

OUYANG Qun (IHEP), **WANG Meng** (SDU), Marc WINTER (IPHC) *FCPPL 2013, Nanjing*

Outline

- Introduction to CMOS Pixel Sensors
- Status of BES-III inner tracking
- R&D Project
- Summary

CMOS Pixel Sensors

- prominent features of CMOS Pixel Sensors (CPS, aka MAPS)
 - high granularity → micronic spatial resolution
 - very thin (signal generated in 10-20 μm thin epitaxial layer)
 - signal processing circuits integrated on sensor substrate
- organisation of MIMOSA sensors
 - manufactured in **0.35 μm** technology, currently transferring to **0.18 μm** technology
 - signal sensing and analogy processing in pixel array
 - mixed and digital circuitry integrated in chip periphery
 - read-out in rolling shutter mode (pixel grouped in columns read out by rows)

State-of-the-Art: MIMOSA-28 for STAR

- main characteristics of MIMOSA-28
 - 0.35 μm process with high-resistivity epitaxial layer
 - architecture with in-pixel correlated double sampling and amplification
 - end-of-column discrimination and binary charge encoding
 - on-chip zero-suppression
 - active area: 960 × 928 pixels (19.9 × 19.2 mm²)
 - pitch: 20.7 μm \rightarrow charge sharing: σ_{sp} ~ 3.5 μm
 - JTAG programmable
 - readout time < 200 µs (5 × 10³ frames/s)
 ➔ 10⁶ part./cm²/s
 - 2 outputs at 160 MHz
 - power consumption ~ 150 mW/cm²
- sensors almost fully evaluated
 - < 15 e ENC at 30-35 °C (as MIMOSA-22AHR)</p>
 - CCE (55Fe) similar to MIMOSA-22AHR
 - radiation tolerance at 30 °C: 150 kRad, 3 × 10¹² n_{eq}/cm²
- commissioning in 2013

Towards Higher Readout Speed and Radiation Tolerance

• Next generation of experiments calls for improved sensor performances :

Expt-System	σ_t	σ_{sp}	TID	Fluence	T_{op}
STAR-PXL	\lesssim 200 μs	\sim 5 μm	150 kRad	$3 \cdot 10^{12} \text{ n}_{eq}/\text{cm}^2$	30°C
				↓?	
ALICE-ITS	10-30 μs	\sim 5 μm	700 kRad	$10^{13}~\mathrm{n}_{eq}/\mathrm{cm}^2$	30°C
CBM-MVD	10-30 μs	\sim 5 μm	\lesssim 10 MRad	\lesssim 10 14 n $_{eq}$ /cm 2	$\ll 0^{\circ}C$
ILD-VXD	\lesssim 10 μs	\lesssim 3 μm	O(100) kRad	$O(10^{11}) n_{eq}/cm^2$	$\lesssim 30^{\circ}C$

Main improvements required to comply with forthcoming experiments' specifications :

&

- o aim for higher epitaxial layer resistivity
- reduce nb(pixels) / read-out unit (column)

- aim for smaller feature size process
- more parallelised read-out
- How to accelerate the pixel read-out
 - elongated pixels ⇒ less pixels /col. & in-pixel discri. ⇒ 3-8 faster r.o.
 - read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - conservative step: 2 discri./col. end (22 μm wide) \Rightarrow simult. 2 row r.o.
 -) remain inside virtuous circle: spatial resol., power, flex mat. budget, ...
 - \Rightarrow 0.18 μm process needed instead of currently used 0.35 μm process

WANG Meng - FCPPL 2013 - Nanjing

MIMOSA-32: Prototyping 0.18 µm Process

- 0.18 μm imaging technology options used :
 - * Epitaxial layer: High-Resistivity (1-5 $k\Omega \cdot cm$) & "18 μm " thick \Rightarrow SNR, rad. tol., ...
 - * Quadruple well: deep P-type skin embedding N-well hosting P-моs transistors ⇒ compactness, power, ...
 - ★ 6 Metal Layers
 - * MIM capacitors
 - ★ etc.
- Prototype sub-divided in several blocks : ▷ ▷ ▷
 - * Sensing elements and in-pixel amplifiers :
 - -• pixel dimensions : 20×20/40/80 μm^2
 - -- 2 different types of sensing elements : diodes of \sim 9–15 μm^2
 - N-MOS and P-MOS transistor based amplifiers
 - Discriminators :
 - Col. // pixel array ended with 1 discriminator/col. (2 variants)
 - Pixel array with in-pixel discriminator (16×80 μm^2 pixels)
 - st Total surface \sim 43 mm 2

several prototypes (MIMOSA-32xx) fabricated in 2011/2012 → tests since April 2012

The BES-III Experiment

- the BES-III experiment
 - general purpose detector at BEPC-II
 E_{cm} ~ 2-4.6 GeV, L_{peak} ~ 10³³/cm²/s
 - versatile researches in τ-charm physics
- Main Drift Chamber (MDC)
 - key tracking component
 - radii: 59 810 mm, max length ~ 2.6 m
 - 43 wire layers, 1T magnetic field
 - $-\sigma_{xy} = 130 \,\mu\text{m}, \sigma_p/p = 0.5\%$ @ 1GeV, dE/dx = 6%
- innermost layers of MDC
 - high background encountered
 - dark current for the 1st layer up to 1 μA per sense wire
 - reducing HV of innermost 4 layers, gas gain decreased to 31% of normal one
 - performance deteriorated (the worst case):
 - σ_{xy} ~ 300 μm, ε_{cell} ~ 70%

Keep the MDC alive

BES-III: data taking for the coming years

- J/ ψ : 1.2B \rightarrow 10B events
- Ψ' : 0.5B \rightarrow 1B events
- ψ(3770): 2.9 fb⁻¹ → 20 fb⁻¹
- R scan...

Actions: possible luminosity increasing

- Construct a new inner drift chamber: 3 years project approved
 - demo prototype to test replacing process
 - new inner drift chamber → starting from 2013
- Investigate new technologies: CMOS pixel sensor,...
 R&D for tracker upgrade around 2018

Inner MDC upgrade with CPS

baseline design

- 3 layers of single sided CPS or 2 layers of double sided CPS
- similar ladder structure as STAR or ALICE

R&D project approved

- budget: 2.8 M CNY
- duration: 2013 2016
- institutions: IHEP + SDU
 → collaboration with IPHC

R&D target: a CPS prototype

density:

 \sim 20 μ m pixel pitch

~ 0.9 M pixels/chip

spatial resolution:

coverage:

rating capability:

material budget:

radiation tolerance:

power consumption:

a few µm $1/10 \sim 800 \text{ cm}^2 \rightarrow 200 \text{ chips} \rightarrow 200 \text{ M pixels}$ $\sim 10^6 \text{ Hz/cm}^2$ $\sim 50 \text{ µm thick}$ $\sim 1 \text{ MRad, } 10^{13} \text{ n}_{eq} \text{ /cm}^2$ $0.2 - 0.3 \text{ W/cm}^2$

Collaboration with Strasbourg IPHC

Critical techniques: Sensors: pixel size, RO speed, power consumption, zero suppression... Ladder structure: ultra light material very thin flex bonding... RO electronics: 8GB band width, xTCA structure... Data transmission: radiation tolerance... Alignment and reconstruction scheme: ...

About 800cm² pixel chips (1/10 prototype) → Almost a complete system of CMOS pixel sensors at STAR

Schedule

- 2013: development of PCB ladders and RO electronics
 - 20 chips (MIMOSA-28) for 2 ladders
 - training on wafer/chip test, ...
 - mechanical design
- 2014: one or two Kapton ladders and RO electronics
 - bonding on flex (CERN/China)
 - mechanical structure, test,...
 - RO/DAQ system
 - simulation/alignment/reconstruction software
- 2015: development of 1/10 inner tracker prototype
 - 800 cm² pixel system very hard job
 - RO/DAQ system adjustment/improvement
- 2016: beam test
 - software improvement

Summary

- IHEP-SDU-IPHC partnership has established to study the adaption of CMOS pixel sensors for BES-III inner tracking.
- An ambitious R&D project targeted a 1/10 coverage prototype has been approved.
- The partnership benefits from/to global effort towards large area trackers, e.g. STAR, ALICE, ILC, ...