

(Quarkonium) Physics opportunities of a fixed-target experiment using LHC beams extracted by a bent crystal

Jean-Philippe Lansberg

IPN Orsay, Université Paris-Sud, CNRS-IN2P3

6th Workshop of the France China Particle Physics Laboratory

March 27-29, 2013, Nanjing U., Nanjing, China

FCPPL project with Pr. J.X. WANG (IHEP), Pr. K.T Chao (PKU), Pr. Y. GAO (Tsinghua), Pr. Y. Mao (PKU), Pr. Z. Tang (USTC), Dr. B. Gong (IHEP), Y.Feng (IHEP) + Pr. C. Hadjidakis (IPNO), Pr. A. Rakotozafindrabe (IRFU), Dr. C. Lorce (IPNO)

thanks to M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPNO), J.P. Didelez (IPNO), F. Fleuret (LLR), B. Genolini (IPNO), E.G. Ferreiro (USC), P. Rosier (IPNO), I. Schienbein (LPSC), E. Scomparin (Torino), and U.I. Uggerhøj (Aarhus)

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 1 / 26

Part I

Why a new fixed-target experiment for HEP now ?

Using LHC Beams for Fixed Target Experiments

March 28, 2013 2 / 26

3 > 4 3

J.P. Lansberg (IPNO, Paris-Sud U.)

• They brought essential contributions to particle & nuclear physics

E N 4 E N

• • • • • • • • • •

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)

イロト イポト イラト イラト

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)

- They brought essential contributions to particle & nuclear physics
 - particle discoveries (Ω⁻(sss), J/ψ, Υ,...)

J.P. Lansberg (IPNO, Paris-Sud U.)

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)

A D b 4 A b

- They brought essential contributions to particle & nuclear physics
 - particle discoveries (Ω⁻(sss), J/ψ, Υ,...)
 - evidence for the novel dynamics of quarks and gluons in HIC (QGP)

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)
 - evidence for the novel dynamics of quarks and gluons in HIC (QGP)
 - observation of surprising QCD phenomena
 - · breakdown of the Lam-Tung relation,
 - · colour transparency,
 - \cdot higher-twist effects in forward meson production ,
 - · anomalously large Single & Double Spin Asymetries,
 - \cdot factorisation breakdown in forward J/ ψ production in pA

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)
 - evidence for the novel dynamics of quarks and gluons in HIC (QGP)
 - observation of surprising QCD phenomena
 - · breakdown of the Lam-Tung relation,
 - · colour transparency,
 - \cdot higher-twist effects in forward meson production ,
 - · anomalously large Single & Double Spin Asymetries,
 - · factorisation breakdown in forward J/ψ production in pA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Fixed-target experiments offer specific advantages that are still nowadays difficult to challenge by collider experiments

- They brought essential contributions to particle & nuclear physics
 - particle discoveries ($\Omega^{-}(sss), J/\psi, \Upsilon,...$)
 - evidence for the novel dynamics of quarks and gluons in HIC (QGP)
 - observation of surprising QCD phenomena
 - · breakdown of the Lam-Tung relation,
 - · colour transparency,
 - \cdot higher-twist effects in forward meson production ,
 - · anomalously large Single & Double Spin Asymetries,
 - \cdot factorisation breakdown in forward J/ψ production in pA
- Fixed-target experiments offer specific advantages that are still nowadays difficult to challenge by collider experiments
- They exhibit 4 decisive features,
 - accessing the high Feynman x_F domain ($x_F \equiv p_Z/p_{Z \max}$)
 - achieving high luminosities with dense targets,
 - varying the atomic mass of the target almost at will,
 - polarising the target.

イロト 不得 トイヨト イヨト

Part II

A fixed-target experiment using the LHC beam(s): AFTER@LHC

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 4 / 26

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

• In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger

B + 4 B +

4 A N

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM: $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ \rho_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} \rho_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}' = \rho_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}^{T} = p_T)$

• $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{\rho_T}{\rho_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

< 回 > < 三 > < 三 >

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ \rho_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} \rho_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = \rho_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{\rho_T}{\rho_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM} > 0$) within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$ [$y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ \rho_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} \rho_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = \rho_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{Z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM}>0)$ within $0^\circ \leq \theta_{Lab} \leq 1^\circ$

 $[y_{CM}\,{=}\,0 \Rightarrow y_{Lab}\,{\simeq}\,4.8]$

- Good thing: small forward detector \equiv large acceptance
- Bad thing: high multiplicity \Rightarrow absorber \Rightarrow physics limitation

- Let's adopt a different strategy and look at larger angles
 - \cdot particles with sufficient p_T to be detected
 - \cdot heavy particles whose decay product have enough p_T to be detected

[not very heavy in fact: $J/\psi \rightarrow \mu\mu$ or $D \rightarrow K\pi$ are fine for current detectors]

- Let's adopt a different strategy and look at larger angles
 - \cdot particles with sufficient p_T to be detected
 - \cdot heavy particles whose decay product have enough $p_{\mathcal{T}}$ to be detected

[not very heavy in fact: $J/\psi
ightarrow \mu\mu$ or $D
ightarrow K\pi$ are fine for current detectors]

- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, no geometrical constrain (e.g. beam pipe) at $\theta_{CM} \simeq 180^{\circ}$

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- Let's adopt a different strategy and look at larger angles
 - \cdot particles with sufficient p_T to be detected
 - \cdot heavy particles whose decay product have enough p_{T} to be detected

[not very heavy in fact: $J/\psi
ightarrow \mu\mu$ or $D
ightarrow K\pi$ are fine for current detectors]

- Advantages:
 - · reduced multiplicities at large(r) angles
 - · access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, no geometrical constrain (e.g. beam pipe) at $\theta_{CM} \simeq 180^{\circ}$

Hadron center-of-mass system

Target rest frame

・ 「 「 ト ・ ニ ト ・ ニ ト

- Let's adopt a different strategy and look at larger angles
 - \cdot particles with sufficient p_T to be detected
 - \cdot heavy particles whose decay product have enough p_{T} to be detected

[not very heavy in fact: $J/\psi
ightarrow \mu\mu$ or $D
ightarrow K\pi$ are fine for current detectors]

- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, no geometrical constrain (e.g. beam pipe) at $\theta_{CM} \simeq 180^{\circ}$

Hadron center-of-mass system

Target rest frame

• x_F systematically studied at fixed target experiments up to +1

< A

H N

x_F systematically studied at fixed target experiments up to +1
 Hera-B was the only one to really explore *x_F* < 0, up to -0.3

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

A D b 4 A b

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

3 > < 3 >

A D b 4 A b

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

3 > 4 3

A D b 4 B b 4

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore x_F < 0, up to -0.3</p>
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$
- If we measure $\Upsilon(b\bar{b})$ at $y_{\rm cms} \simeq -2.5 \Rightarrow x_F \simeq \frac{2m_{\Upsilon}}{\sqrt{s}} \sinh(y_{\rm cms}) \simeq -1$

• Design LHC lead-beam energy: 2.76 TeV per nucleon

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 8 / 26

3 + 4 = +

- 4

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 8 / 26

⊒⇒ ∢∃⇒
★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

E N 4 E N

A D b 4 A b

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

12 N A 12

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

★ Illustration for collimation

< ロ > < 同 > < 回 > < 回 >

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

Image: A matrix

★ Illustration for collimation

★ Tests will be performed on the LHC beam: LUA9 proposal approved by the LHCC

J.P. Lansberg (IPNO, Paris-Sud U.)

March 28, 2013 9 / 26

• Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$

3

A D > A B > A B > A B >

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

(日)

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

イロト イポト イラト イラト

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} imes N_{target} = N_{beam} imes (\rho imes \ell imes \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC) years]
--------------------	----------

Target	ρ (g.cm-³)	A	£ (μb ⁻¹ .s ⁻¹)	∫£ (pb ^{.1} .yr ^{.1})
Sol. H ₂	0.09	1	26	260
Liq. H ₂	0.07	1	20	200
Liq. D ₂	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
w	19.1	185	31	310
Pb	11.35	207	16	160

• 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$

3

イロト 不得 トイヨト イヨト

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51....)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

3 > 4 3

4 A N

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan
 - Run14pp 12 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$

• Run14*d*Au 0.15 pb⁻¹ @
$$\sqrt{s_{NN}} = 200$$
 GeV

∃ ► < ∃</p>

4 A N

Luminosities

• 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)

25

- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan
 Run14pp 12 pb⁻¹ @ \sqrt{s_NN} = 200 GeV
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \ \text{pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \ \text{GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger

T 20 210 → CMS 22.637 fb⁻¹ → LHC 52.115 fb⁻¹ → LHC 52.099 pb⁻¹ PRELIMINARY PRELIMINARY 10 Mar Apr May Jun Jul Aug Sep Oct Nov Month in 2012

LHC 2012 RUN (4 TeV/beam)

ATLAS 22.817 fb-

(generated 2012-12-02 18:23 including fill 3360

★ ∃ > < ∃ >

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51....)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets \hat{f}_{g}

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan
 Run14pp 12 pb⁻¹ @ \sqrt{s_{NN}} = 200 GeV
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
- Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)

< ロ > < 同 > < 回 > < 回 >

Part III

AFTER: flagships measurements

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

▲ 重 ▶ ▲ 重 ▶ 重 少 Q ○ March 28, 2013 12 / 26

• Gluon distribution at mid, high and ultra-high x_B in the

Gluon distribution at mid, high and ultra-high x_B in the
 proton

3 1 4 3

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - neutron (via deuteron target)

3 > 4 3

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - **neutron** (via deuteron target) unique measurement !

3 > 4 3

< 6 b

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - neutron (via deuteron target) unique measurement !
 - nucleus

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - neutron (via deuteron target) unique measurement !
 - nucleus absolutely complementary with LHeC

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - **neutron** (via deuteron target) unique measurement !
 - nucleus absolutely complementary with LHeC

with gluon sensitive probes, namely

quarkonia

< 6 k

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - **neutron** (via deuteron target) unique measurement !
 - nucleus absolutely complementary with LHeC

- with gluon sensitive probes, namely
 - quarkonia
 - Isolated photon

< 6 k

- Gluon distribution at mid, high and ultra-high x_B in the
 - proton
 - **neutron** (via deuteron target) unique measurement !
 - nucleus absolutely complementary with LHeC

- with gluon sensitive probes, namely
 - quarkonia
 - Isolated photon
 - jets (we should access $P_T \in [20, 40]$ GeV)

• Heavy-quark distributions (at high *x_B*)

э

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down instrinsic charm, ... at last

Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin

< ロ > < 同 > < 回 > < 回 >

• Gluon Sivers effect: correlation between

the gluon transverse momentum & the proton spin

• Transverse single spin asymetries

using gluon sensitive probes

The Sec. 74

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

The Sec. 74

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

• B & D meson production

E N 4 E N

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ J.W. Qiu, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ A. Bacchetta, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x[↑]
 where the k_T-spin correlation is the largest

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

イロト イポト イラト イラト

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ A. Bacchetta, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x[↑] where the k_T-spin correlation is the largest
- In general, one can carry out an extensive spin-physics program

• For the first time, one would study W/Z production

in their threshold region

< ロ > < 同 > < 回 > < 回 >

- For the first time, one would study W/Z production
 - In their threshold region
 Unique opportunity to measure QCD/threshold effects on W/Z production

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For the first time, one would study W/Z production
 - in their threshold region
 Unique opportunity to measure QCD/threshold effects on W/Z production
 - If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies

(B)

- For the first time, one would study W/Z production
 - in their threshold region
 - Unique opportunity to measure QCD/threshold effects on W/Z production
 - If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies
 - Reconstructed rate are most likely between a few dozen to a few thousand / year

A B F A B F

- For the first time, one would study W/Z production
 - in their threshold region
 - Unique opportunity to measure QCD/threshold effects on W/Z production
 - If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies
 - Reconstructed rate are most likely between a few dozen to a few thousand / year
- Multiply heavy baryons: discovery potential ? ($\Omega^{++}(ccc), ...$)
- Very forward (backward) physics:
 - semi-diffractive events
 - Ultra-peripheral collisions, etc.

3

Part IV

AFTER and the heavy flavours

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 17 / 26

3 > 4 3

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

J.P. Lansberg (IPNO, Paris-Sud U.)

ъ.

< 6 b

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

• 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
- Probe of the (very) large x in the target

Target	А	∫ <i>⊥</i> (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Ƴ) yr-1 =A <i>L</i> ℬσ _Y
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 106
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

• In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for

Target	А	∫£ (fb ^{.1} .yr ^{.1})	N(J/Ψ) yr ⁻¹ = A£βσ _¥	N(Υ) yr-1 =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)

Target	А	∫£ (fb ^{.1} .yr ^{.1})	N(J/Ψ) yr ⁻¹ = A£βσ _¥	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T

Target	А	∫£ (fb ^{.1} .yr ^{.1})	N(J/Ψ) yr ⁻¹ = A£βσ _¥	N(Υ) yr-1 =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 106
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA

Target	А	∫ <i>⊥</i> (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Ƴ) yr-1 =A <i>L</i> ℬσ _Y
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 106
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA
 - not to mention ratio with open charm, Drell-Yan, etc ...

• Luminosities and yields with the extracted 2.76 TeV Pb beam

Target	A.B	∫£ (nb-1.yr-1)	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Ƴ) yr¹ =AB <i>L</i> ℬσ _Y
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 $(\sqrt{s_{NN}} = 72 \text{ GeV})$

J.P. Lansberg (IPNO, Paris-Sud U.)

• Luminosities and yields with the extracted 2.76 TeV Pb beam

				$(\sqrt{s_{NN}} =$
Target	А.В	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 106	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV

• Luminosities and yields with the extracted 2.76 TeV Pb beam

	$(\sqrt{s_{NN}} =$	= 72 GeV)
1	NI/22 Aurol	

Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr ⁻¹ = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

• Luminosities and yields with the extracted 2.76 TeV Pb beam

				$(\sqrt{s_{NN}} =$
Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 106	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour

J.P. Lansberg (IPNO, Paris-Sud U.)

New quarkonium observables at LHC and AFTER

Aim: pin down the production mechanism

The Sec. 74

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

E N 4 E N

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

4 **A** N A **B** N A **B** N

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb, PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• $J/\psi/\Upsilon$ + prompt γ : LHC now ? then AFTER

R.Li and J.X. Wang, PLB 672,51,2009; JPL, PLB 679,340,2009.

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• $J/\psi/\Upsilon$ + prompt γ : LHC now ? then AFTER

R.Li and J.X. Wang, PLB 672,51,2009; JPL, PLB 679,340,2009.

• $J/\psi + W$: ATLAS (forthcoming)

e.g. JPL, C. Lorcé, arXiv:1303.5327

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• $J/\psi/\Upsilon$ + prompt γ : LHC now ? then AFTER

R.Li and J.X. Wang, PLB 672,51,2009; JPL, PLB 679,340,2009.

• $J/\psi + W$: ATLAS (forthcoming) • $J/\psi + Z$: LHC ? • $J/\psi + Z$: LHC ? • $J/\psi + Z$: LHC ?

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• $J/\psi/\Upsilon$ + prompt γ : LHC now ? then AFTER

R.Li and J.X. Wang, PLB 672,51,2009; JPL, PLB 679,340,2009.

• $J/\psi + W$: ATLAS (forthcoming)

e.g. JPL, C. Lorcé, arXiv:1303.5327

- $J/\psi + Z$: LHC ? FCPPL collab. B. Gong, JPL, C. Lorcé, J.X. Wang, JHEP 03 115 (2013)
- $\chi_{c,b}$: Tevatron, LHC, then AFTER@LHC (down to low P_T)

• $J/\psi + J/\psi$: NA3 in the 80's, LHCb now, then AFTER@LHC

NA3, PLB 114 (1982) 457 ; LHCb,PLB 707 (2012) 52

• $J/\psi + D$: LHCb, then AFTER@LHC

LHCb, JHEP 1206 (2012) 141 ; S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• $J/\psi/\Upsilon$ + prompt γ : LHC now ? then AFTER

R.Li and J.X. Wang, PLB 672,51,2009; JPL, PLB 679,340,2009.

• $J/\psi + W$: ATLAS (forthcoming)

e.g. JPL, C. Lorcé, arXiv:1303.5327

- $J/\psi + Z$: LHC ? FCPPL collab. B. Gong, JPL, C. Lorcé, J.X. Wang, JHEP 03 115 (2013)
- $\chi_{c,b}$: Tevatron, LHC, then AFTER@LHC (down to low P_T)
- η_c : soon (?) LHCb, then AFTER@LHC
 - gluon polarisation studies e.g. D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007
 - gluon PDF extraction: e.g. D. Diakonov, M.G. Ryskin, A.G. Shuvaev. JHEP 02 (2013) 069.

Part V

Outlooks

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 22 / 26

э.

イロト イヨト イヨト イヨト

• First physics paper Physics Reports 522 (2013) 239

J.P. Lansberg (IPNO, Paris-Sud U.)

э

(日)

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start
 - doing first simulations (fast simulation setup is nearly ready thanks to the work of L. Massacrier, S. Porteboeuf, I. Hrivnacova & A. Rakotozafindrabe in Trento)

A (10) A (10)
- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start
 - doing first simulations (fast simulation setup is nearly ready thanks to the work of L. Massacrier, S. Porteboeuf, I. Hrivnacova & A. Rakotozafindrabe in Trento)
 - thinking about possible designs

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start
 - doing first simulations (fast simulation setup is nearly ready thanks to the work of L. Massacrier, S. Porteboeuf, I. Hrivnacova & A. Rakotozafindrabe in Trento)
 - thinking about possible designs
 - thinking about the optimal detector technologies

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start
 - doing first simulations (fast simulation setup is nearly ready thanks to the work of L. Massacrier, S. Porteboeuf, I. Hrivnacova & A. Rakotozafindrabe in Trento)
 - thinking about possible designs
 - thinking about the optimal detector technologies
- Theorist colleagues are encouraged to think about additional ideas of physics

already 2 papers on the physics at AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037 D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007

- First physics paper Physics Reports 522 (2013) 239
- 3 small meetings already organised over the last 12 months
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Plan for a 3 days workshop at CERN next Fall
- We are looking for more partners to start
 - doing first simulations (fast simulation setup is nearly ready thanks to the work of L. Massacrier, S. Porteboeuf, I. Hrivnacova & A. Rakotozafindrabe in Trento)
 - thinking about possible designs
 - thinking about the optimal detector technologies
- Theorist colleagues are encouraged to think about additional ideas of physics

already 2 papers on the physics at AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037 D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007

< □ > < 同 > < 回 > < = > < =

• Webpage: http://after.in2p3.fr

Part VI

FCPPL & AFTER

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 24 / 26

æ

イロト イヨト イヨト イヨト

• 2011-2012 & 2012-2013 : New theory project on quarkonium production

★ ∃ > < ∃ >

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO
- With IHEP, first study of $J/\Psi + Z$ @ NLO (now published) and

then total x-section

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO
- With IHEP, first study of $J/\Psi + Z$ @ NLO (now published) and then total x-section
- Project on double charmonium with Peking U.

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO
- With IHEP, first study of $J/\Psi + Z$ @ NLO (now published) and then total x-section
- Project on double charmonium with Peking U.
- During my stay in China last year, contacts with Z. Tang (USTC) and then Y. Gao (Tsinghua)

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO
- With IHEP, first study of $J/\Psi + Z$ @ NLO (now published) and then total x-section
- Project on double charmonium with Peking U.
- During my stay in China last year, contacts with Z. Tang (USTC) and then Y. Gao (Tsinghua)

We have found natural to extend the project to

quarkonium physics at AFTER

- 2011-2012 & 2012-2013 : New theory project on quarkonium production
- Involved IPNO, IHEP & Peking U.
- Visits of J.P Lansberg (2), J.X Wang (1), C. Lorcé (1)
- Forthcoming visits: J.P. Lansberg to QWG & IHEP; H.S. Shao (Pr. Chao's PhD student) to IPNO: Dr. B. Gong (IHEP) to IPNO
- With IHEP, first study of $J/\Psi + Z$ @ NLO (now published) and then total x-section
- Project on double charmonium with Peking U.
- During my stay in China last year, contacts with Z. Tang (USTC) and then Y. Gao (Tsinghua)

We have found natural to extend the project to

quarkonium physics at AFTER

 \rightarrow 3 new Chinese experimental partners:

USTC (Tang), Tsinghua (Gao) & Peking U. (Mao)

 \rightarrow 2 new French experimental partners:

IRFU (Rakotozafindrabe) & IPNO (Hadjidakis)

Phenomenology \leftrightarrow Experiment

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $Phenomenology \leftrightarrow Experiment$

 Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"

4 3 5 4 3 5 5

 $Phenomenology \leftrightarrow Experiment$

- Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"
- Figure of merits for gluon PDF sensitivity based on the expected luminosities

4 E N 4 E N

Phenomenology \leftrightarrow Experiment

- Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"
- Figure of merits for gluon PDF sensitivity based on the expected luminosities

 $Phenomenology \leftrightarrow Theory$

 $Phenomenology \leftrightarrow Experiment$

- Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"
- Figure of merits for gluon PDF sensitivity based on the expected luminosities

 $Phenomenology \leftrightarrow Theory$

• Theoretical study of the energy dependence of the yield

 $Phenomenology \leftrightarrow Experiment$

- Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"
- Figure of merits for gluon PDF sensitivity based on the expected luminosities

 $Phenomenology \leftrightarrow Theory$

- Theoretical study of the energy dependence of the yield
- Theoretical study of the yield close the edge of the phase space $(|x_F| \rightarrow 1)$

$Phenomenology \leftrightarrow Experiment$

- Master students to make first fast simulations for inclusive quarkonium with existing set-up (e.g. LHCb) and PYTHIA "out of the box"
- Figure of merits for gluon PDF sensitivity based on the expected luminosities

 $Phenomenology \leftrightarrow Theory$

- Theoretical study of the energy dependence of the yield
- Theoretical study of the yield close the edge of the phase space $(|x_F| \rightarrow 1)$
- Improve the predictions for e.g. η_c

Part VII

Backup slides

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 27 / 26

2

Inter-crystalline fields are huge

J.P. Lansberg (IPNO, Paris-Sud U.)

March 28, 2013 28 / 26

Inter-crystalline fields are huge

• The channeling efficiency is high for a deflection of a few mrad

J.P. Lansberg (IPNO, Paris-Sud U.)

Inter-crystalline fields are huge

The channeling efficiency is high for a deflection of a few mrad
One can extract a significant part of the beam loss (10⁹p⁺s⁻¹)

J.P. Lansberg (IPNO, Paris-Sud U.)

Inter-crystalline fields are huge

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss $(10^9 p^+ s^{-1})$
- Simple and robust way to extract the most energetic beam ever:

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

Backup slides

Luminosities

Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{\textit{beam}} \times \textit{N}_{\textit{target}} = \textit{N}_{\textit{beam}} \times (\rho \times \ell \times \mathscr{N}_{\textit{A}}) / \textit{A}$$

 $\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \ \ell = 1 \text{ cm} \text{ (target thickness)}$

- Integrated luminosity $\int dt \mathscr{L} = \mathscr{L} \times 10^6$ s for Pb
- Expected luminosities with 2×10⁵Pb s⁻¹ extracted (1cm-long target)

Target	ρ (g.cm ⁻³)	Α	£ (mb ⁻¹ .s ⁻¹)=∫£ (nb ⁻¹ .yr ⁻¹)
Sol. H ₂	0.09	1	11
Liq. H ₂	0.07	1	8
Liq. D ₂	0.16	2	10
Ве	1.85	9	25
Cu	8.96	64	17
w	19.1	185	13
Pb	11.35	207	7

- Planned lumi for PHENIX Run15AuAu 2.8 nb⁻¹ (0.13 nb⁻¹ at 62 GeV)
- Nominal LHC lumi for PbPb 0.5 nb⁻¹

J.P. Lansberg (IPNO, Paris-Sud U.)

・ロット (雪) (き) (き)

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31

イロト イポト イラト イラト

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhei, UJ Uggerhei, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhei, UJ Uggerhei, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$

イロト イポト イラト イラト

Backup slides

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 16p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%, no pile-up...

J.P. Lansberg (IPNO, Paris-Sud U.)

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7 \; \text{bunches} \; s^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 16p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the *p*⁺ in the beam

These protons are lost anyway !

no pile-up...

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhei, UJ Uggerhei, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7 \; \text{bunches} \; s^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 16p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

similar figures for the Pb-beam extraction

no pile-up...

Need for a quarkonium observatory

• Many hopes were put in quarkonium studies to extract gluon PDF

★ ∃ > < ∃ >

Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling

Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) "soft," (2)"-hard(") and (3) which behave as $\sigma(X) - 1/\sqrt{x}$ at small x. J_{ν}^{A} and prompt photon hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. M', Z_{ν} and ig production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 31 / 26

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gloon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu_0 n^2$, $(2)^{-1} \alpha n^2$, and (1) which behave as $\sigma(X) - 1/\sqrt{x}$ at small x. J_0^{+} and prompt photon hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. M', Z_{-} and gir production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

$\bullet~\mbox{Production}~\mbox{puzzle} \rightarrow \mbox{quarkonium}$ not used anymore in global fits

J.P. Lansberg (IPNO, Paris-Sud U.)

March 28, 2013 31 / 26

Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu s(h, '2)$ $hard(-\pi)$ and (3) which behaves as $\sigma(X) - 1/\sqrt{x}$ at small x. J/ϕ and promph hoton hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. M', Z_{α} and g production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured to DiStructure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

Production puzzle → quarkonium not used anymore in global fits
With systematic studies, one would restore its status as gluon probe

J.P. Lansberg (IPNO, Paris-Sud U.)

March 28, 2013 31 / 26

• The target versatility of a fixed-target experiment is undisputable

The Sec. 74

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects

4 E N 4 E N

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies

イロト イポト イラト イラト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?

イロト イポト イラト イラト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)

< 口 > < 同 > < 回 > < 回 > < 回 > <

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)
- One should be careful with factorization breaking effects:

This calls for multiple measurements to (in)validate factorization

3

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC
- the possibilities for *cc* recombination
 - Open charm studies are difficult where recombination matters most

i.e. at low P_T

• Only indirect indications –from the y and P_T dependence of R_{AA}–

that recombination may be at work

• CNM effects may show a non-trivial y and P_T dependence ...

Nuclear Instruments and Methods in Physics Research A 333 (1993) 125-135 North-Holland

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SectionA

LHB, a fixed target experiment at LHC to measure CP violation in B mesons

Flavio Costantini

University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels $B^0 \rightarrow J/\psi + K_s^0$, $B^0 \rightarrow \pi^+ \pi^-$. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻³s⁻¹ luminosity [5].

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

¹⁰ $B\overline{B}$ pairs per year

• *B*-factories: 1 ab⁻¹ means 10⁹ *B* B pairs

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- *B*-factories: 1 ab⁻¹ means 10⁹ *B* B pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV

BB pairs per year

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.

BB pairs per year

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- *B*-factories: 1 ab⁻¹ means 10⁹ *B* B pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.

BB pairs per year

- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Beam extraction

• Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

••• The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\simeq 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

the same momentum per charge as protons are

deflected in a crystal with similar efficiencies

If the crystal is positioned at the kicking section, the whole dump system can be used for slow extraction of parts of the beam halo, the particles that are anyway lost subsequently at collimators.

$UA9 \rightarrow LUA9$

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

nators in hadronic accelerators and colliders

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

J.P. Lansberg (IPNO, Paris-Sud U.)

Towards an installation in the LHC : propose and install during LS1 a min. number of devices

- 2 crystals
- tests during LS2

Long term plan is ambitious : propose a collimatio system based on bent crystals for the upgrade of the current LHC collimation system

(x,Q²) map of AFTER isolated-γ

[D.d'E & J.Rojo, NPB 860 (2012) 311]

P-P

p-p kinematics at fixed-target LHC:

To access x > 0.3 one needs isolated- γ with: $p_T = x_T \sqrt{s/2} > 10-20$ GeV/c

[D D'Enterria Physics at AFTER using (HC beams FCT* Trento Feb 2013]

J.P. Lansberg (IPNO, Paris-Sud U.)

VEW !

Using LHC Beams for Fixed Target Experiments

March 28, 2013 37 / 26

<u>AFTER@LHC</u> Detector : could be inspired by PANDA

EmCal could be based on ultragranular CALICE, developed for ILC

J.P. Lansberg (IPNO, Paris-Sud U.)

March 28, 2013 38 / 26

Simone Montesano - February 11th, 2013 - Physics at AFTER using the LHC beams

Crystal resistance to irradiation

- IHEP U-70 (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10¹⁴ protons every 9.6 s, several minutes irradiation
 - · equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - · 5 mm silicon crystal, channeling efficiency unchanged
- · SPS North Area NA48 (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5 x 10¹² protons every 14.4 s, one year irradiation, 2.4 x 10²⁰ protons/cm² in total,
 - · equivalent to several year of operation for a primary collimator in LHC
 - 10 x 50 x 0.9 mm³ silicon crystal, 0.8 x 0.3 mm² area irradiated, channeling efficiency reduced by 30%.
- HRMT16-UA9CRY (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 µs, 1.1 x 10¹¹ protons per bunch (3 x 10¹³ protons in total)
 - · energy deposition comparable to an asynchronous beam dump in LHC
 - 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - · accurate FLUKA simulation of energy deposition and residual dose

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop, Physics at AFTER using the LHC beams (Feb. 2013)

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 39 / 26

Accessing the large x glue

PYTHIA simulation $\sigma(y) / \sigma(y=0.4)$ statistics for one month 5% acceptance considered

Statistical relative uncertainty Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF - only for the gluon content of the target - assuming

$$x_g = M_{J/\Psi}/\sqrt{s} e^{-yCM}$$

 $\begin{array}{l} J/\Psi \\ y_{\text{CM}} \sim \ 0 \ \rightarrow x_{\text{g}} = 0.03 \\ y_{\text{CM}} \sim -3.6 \ \rightarrow x_{\text{g}} = 1 \end{array}$

 $\begin{array}{l} \text{Y: larger } x_{g} \text{ for same } y_{\text{CM}} \\ y_{\text{CM}} \sim \ 0 \ \rightarrow x_{g} = 0.08 \\ y_{\text{CM}} \sim -2.4 \ \rightarrow x_{g} = 1 \end{array}$

⇒ Backward measurements allow to access large x gluon pdf

March 28, 2013 40 / 26

SPS and Hera-B

$-J/\psi$ data in *pA* collisions

NA60 Phys.Lett. B 706 (2012) 263 NA 50 Eur.Phys.J. C48 (2006) 329 NA 3 Z.Phys. C20 (1983) HERA-B Eur.Phys.J. C60 (2009) 525

J.P. Lansberg (IPNO, Paris-Sud U.)

∃ > < ∃</p>

SPS and Hera-B

J.P. Lansberg (IPNO, Paris-Sud U.)

Using LHC Beams for Fixed Target Experiments

March 28, 2013 41 / 26