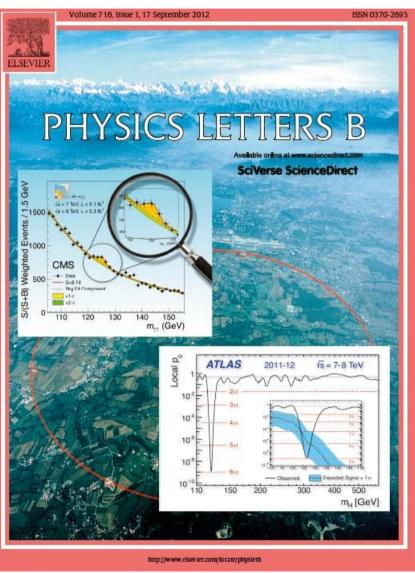


Search for Higgs->Z γ and 2012 project summary

Giovanni Marchiori, Yanwen Liu, <u>Kun Liu</u> LPNHE(Paris) and USTC(China)

27/03/2013 FCPPL workshop @ Nanjing

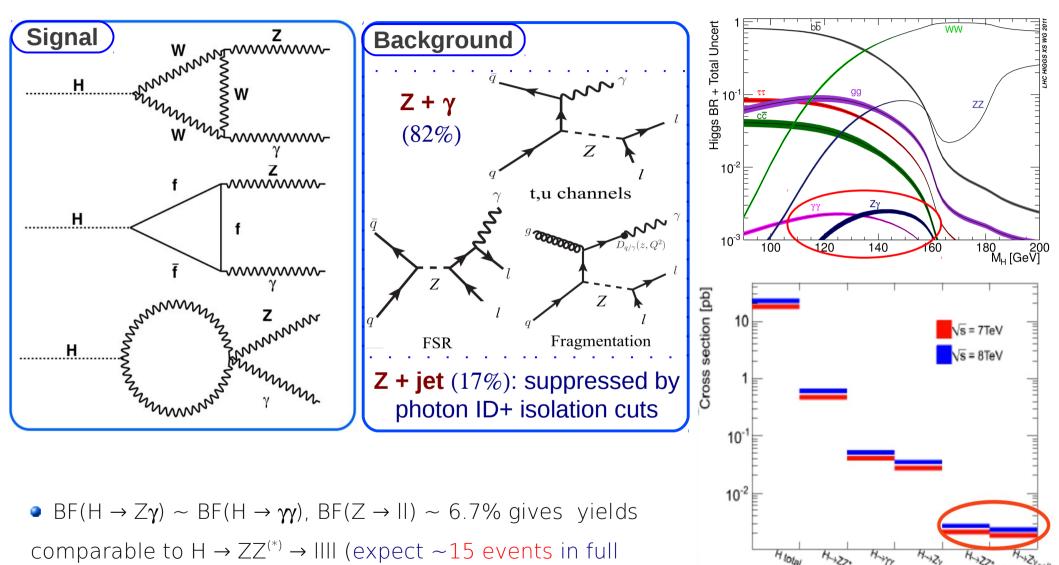
Introduction



- Search for $H \rightarrow Z\gamma$
 - -- Motivation
 - -- Data sets and event selection
 - -- Data-driven background decomposition
 - -- Limit extraction
 - -- Conclusion
- Summary of activities during year 2012

Observation of Higgs-like particle & why H ightarrow Z γ

- Higgs-like particle have been discovered both in ATLAS/CMS on diboson channels
 - : $\gamma\gamma$, $ZZ^{(*)}$, $WW^{(*)}$



- Properties of new particle ?
- Standard Model Scalar?
- Why H $\rightarrow Z\gamma$?

-- decay rate can help determine whether the the new boson is SM Higgs boson

-- sensitive to potential new particles decay into $\ensuremath{Z} \gamma$

• In Standard Model, $H \rightarrow Z\gamma$ proceeds through loops(mostly W-loop)

2011 + 2012 data for $m_H = 125$ GeV)

Process

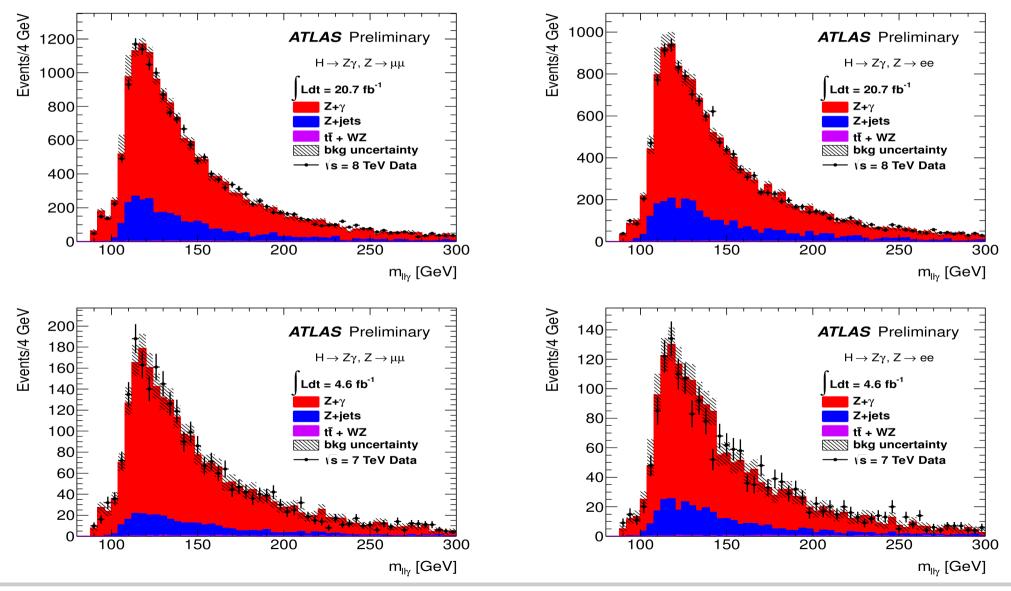
Data sets

full 2011 + 2012 data sets -- 7 TeV : 4.6 fb⁻¹ -- 8 TeV : 20.7 fb⁻¹

Signal simulation

Powheg+Pythia8: ggF and VBF processes 115-150GeV in steps of 5 GeV ,@7 and 8TeV MCFM+Pythia8 : ggF @ 8TeV, for syst. Studies

Background simulation


Full simulation : Z+ γ (Sherpa, up to 3 jets), Z+ jets (Alpgen/Sherpa, up to 5 jets) ttbar (MC@ NLO), WZ (Powheg + Pythia or Sherpa)

- Event selection (details in backup):
 - -- Object quality requirement
 - -- Single-/di-lepton(<mark>e,µ</mark>) triggers
 - -- Primary vertex requirement
 - -- Lepton $E_T > 10 \text{GeV} + \text{kinematic and isolation requirements}$
 - -- Photon $E_T > 15$ GeV + kinematic and isolation requirements
 - -- Requirements for Z boson candidate

Data-driven background decomposition: using two-dimensional sideband

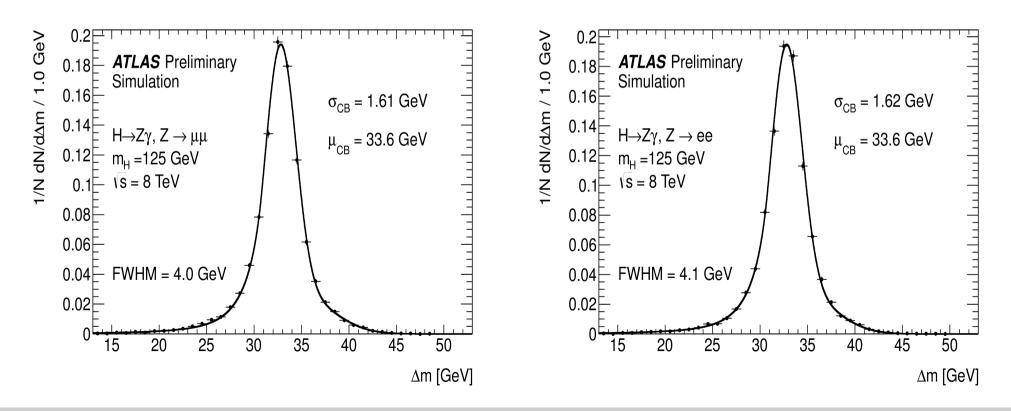
method to discriminate $Z+\gamma$ vs Z+jet in data and using MC to estimate tt+WZ bkg.

• Set 95% C.L. limit on production cross section times BF normalized to SM expectation and p-values for the compatibility of the data with background-only hypothesis by using likelihood-based statistical tests.

• Unbinned likelihood :

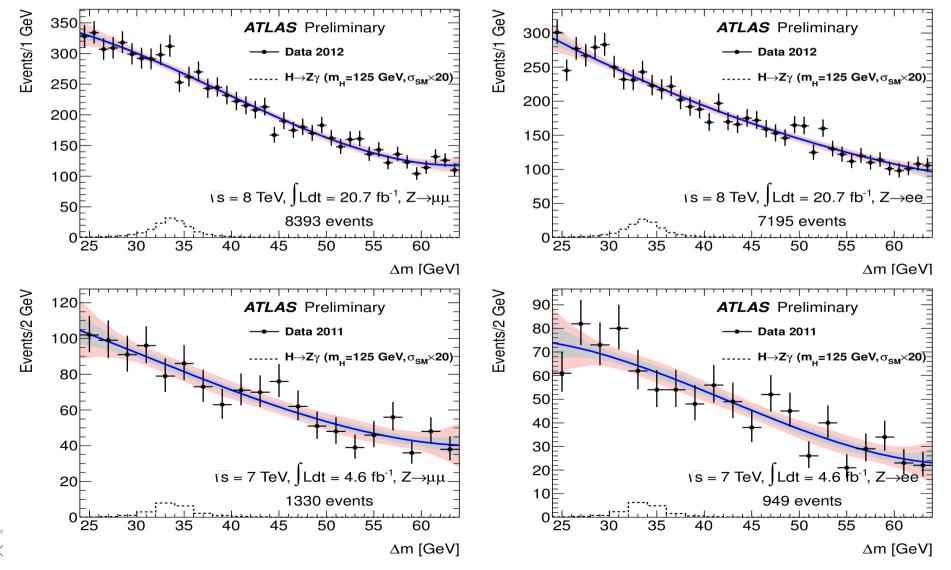
-- $\Delta m = M_{||\gamma} - M_{||}$ as discriminating variable(insensitive to possible H \rightarrow || γ bkg:~5%)

-- 4 categories based on lepton flavor and \slash @ 7 TeV or 8 TeV


Full Likelihood function
$$L\left(\mu, \theta = \bigcup_{c=1}^{n_{cat}} \theta_c | x = \bigcup x_c\right) = \prod_{c=1}^{n_{cat}} L_c(\mu, \theta_c | x_c)$$
Likelihood function
in each category
$$L_c(\mu, \theta_c | x_c) = e^{-N'_c} N'_c \prod_{k=1}^{N_c} \mathscr{L}_c(x_k | \mu, \theta_c)$$
Likelihood function
in each eventSignal PDFBackground PDF $\mathscr{L}_c(x | \mu, \theta_c) = \frac{N_{signal,c}(\mu, \theta_c^{norm})}{N_{signal,c} + N_{bkg,c}} f_{signal,c}(x | \theta_c^{shape}) + \frac{N_{bkg,c}}{N_{signal,c} + N_{bkg,c}} f_{bkg,c}(x | \theta_c^{bkg})$

• Expected signal yields: $N_{i,\ell}(m_H) = \int \mathscr{L}dt \times \sigma_i(m_H) \times \mathscr{B}_{H \to Z\gamma}(m_H) \times \mathscr{B}_{Z \to \ell\ell} \times \varepsilon_{i,\ell}(m_H)$

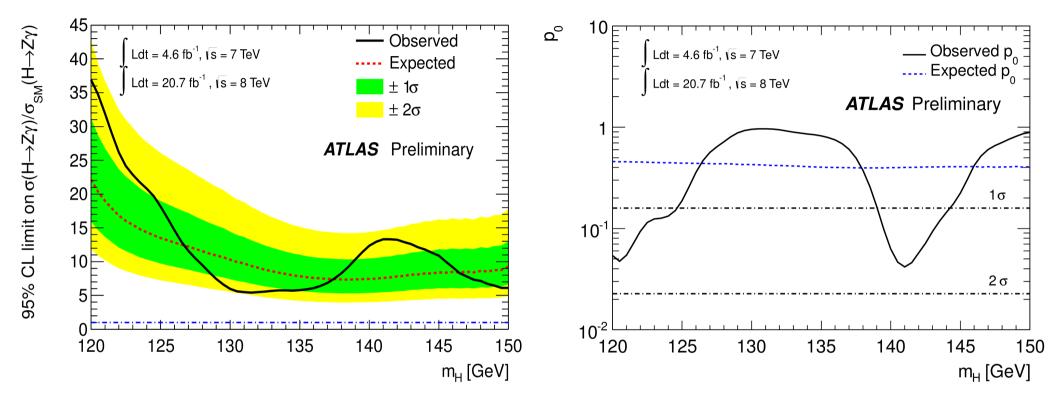
-- Higgs BF and x-section from theory


- -- efficiency for production from signal MC plus parabolic interpolation for ggF and VBF processes. And use average of ggF and VBF efficiency for VH,ttH
- Signal model : Crystal-Ball + Gaussian, global fit of the parameters vs m_H.

9

- Choose background model and fit region which minimises σ_{N} and does not introduce too large bias(spurious signal) on the fitted signal
- Chosen fit range + model : $24 < \Delta m < 64$ GeV, 3rd degree polynomial

• Theory uncertainty on x-section and Higgs BF from Higgs@LHC x-section WG


Experiment uncertainties:

Systematic Uncertainty	$H \rightarrow Z(ee)\gamma(\%)$	$H \to Z(\mu\mu)\gamma(\%)$	
Signal Yield			
Luminosity	3.6 (1.8)	3.6 (1.8)	
Trigger efficiency	0.4 (0.2)	0.8 (0.7)	
Acceptance of kinematic selection	4.0 (4.0)	4.0 (4.0)	
γ identification efficiency	2.9 (2.9)	2.9 (2.9)	
electron reconstruction and identification efficiency	2.7 (3.0)		
μ reconstruction and identification efficiency		0.6 (0.7)	
e/γ energy scale	1.4 (0.3)	0.3 (0.2)	
e/γ isolation	0.4 (0.3)	0.4 (0.2)	
e/γ energy resolution	0.2 (0.2)	0.0 (0.0)	
μ momentum scale		0.1 (0.1)	
μ momentum resolution		0.0 (0.1)	
Signal Δm resolution			
e/γ energy resolution	5.0 (5.0)	2.4 (2.4)	
μ momentum resolution		0.0 (1.5)	
Signal Δm peak position			
e/γ energy scale	0.2 (0.2) GeV	0.2 (0.2) GeV	
μ momentum scale		negligible	

• Taking into account the bias from background modeling("spurious signal")

• Total number of nuisance parameters : 39

- Observed (expected) upper limit at 125GeV : 18.2xSM (13.5xSM)
- Observed (expected) significance at 125GeV : 0.14 σ (0.89 σ)
- \bullet Maximum upward fluctuation at 141 GeV : 1.7 σ

- A search for $H \rightarrow Z\gamma$ performed with 4.6 fb⁻¹ @ 7TeV + 20.7 fb⁻¹ @ 8TeV
- For 120 < m_H < 150 GeV :
 - -- expected limits vary between 7.3 and 22.1xSM
 - -- observed limits vary between 5.4 and 36.9xSM
- At 125 GeV :
 - -- the observed (expected) limits are 18.2xSM (13.5xSM)
 - -- the observed (expected) local significance is 0.89σ (0.14 σ)
- The biggest local excess of 1.7 σ significance is found at 141 GeV

Photon performance

- -- Proposed di-photon medium trigger
- -- Photon trigger efficiency measurement
- -- Photon Identification efficiency measurement

Physics studies

- -- Measurement of the SM isolated photon pair production cross section
- -- Observation of a new particle in search for the Standard Model Higgs boson
- -- Measurements of the propeties of the Higgs-like boson in two photon decay channel with 25 fb⁻¹ of proton-proton collision data
- -- Search for Standard Model Higgs boson in the H \rightarrow Z γ decay model with 7TeV and 8 TeV data

- Proposed di-photon medium triggers for the 2012 data taking: re-optimized
- criteria on loose trigger to be more robust against pile up, and adding loose cut on strip variable(Eratio) to reduce trigger rate
 - -- EF_2g20vh_medium : for SM di-photon x-section measurement
 - -- EF_g30_medium_g20_medium : as backup trigger for H $\rightarrow \gamma \gamma$ analysis
- Photon trigger efficiency measurement using photons from radiative Z decays :
- public note on the trigger efficiency measurement is in preparation
 - -- EF_g35_loose_g25_loose : 99.40% \pm 0.23% (used in H $\rightarrow \gamma \gamma$ Moriond results)
 - -- EF_g30_medium_g20_medium : 99.01% +0.21% / 0.22%
 - -- EF_2g20vh_medium : 98.74% ± 0.16 %
- Photon identification efficiency measurement: performed two data-driven
- measurements with two alternative techniques.
 - -- conference note for 2011 data: http://cds.cern.ch/record/1473426
 - -- paper in preparation both for 2011/2012 data: (one summary talk at Higgs $\rightarrow \gamma\gamma$ workshop) https://indico.cern.ch/getFile.py/access?contribId=8&sessionId=2&resId=0&materialId=slides&confId=214002
 - -- Poster was shown in LHCC 2013 :

https://indico.cern.ch/getFile.py/access?contribId=149&sessionId=8&resId=0&materiaIId=slides&confId=238337

- Measurement of the SM isolated photon pair production cross section @
 7TeV : JHEP01(2013)086
 - -- mainly contributed by Giovanni M.(editor), Lydia R.(editor), Sandrine L. and Kun L.

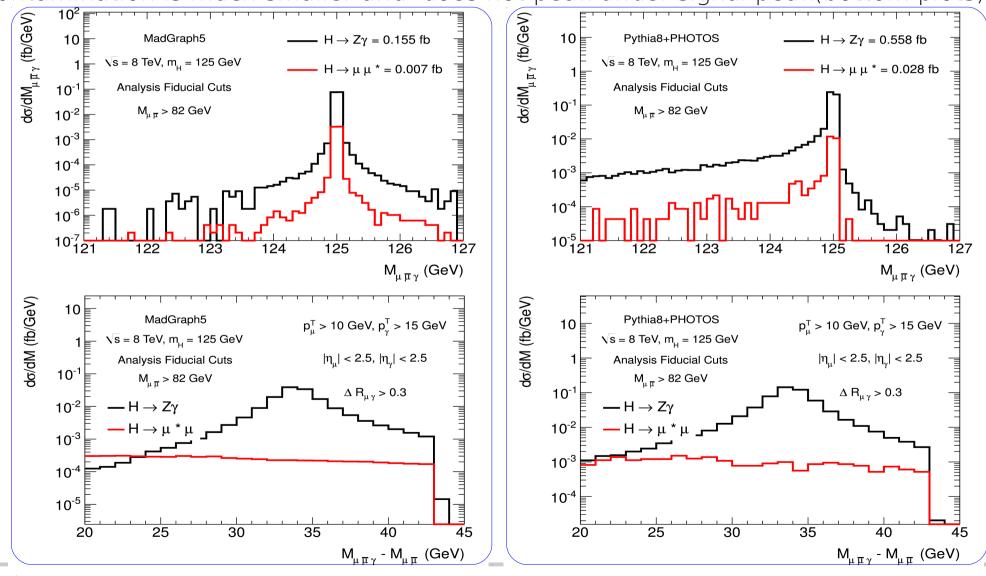
- Observation of a new particle in search for Standard Model Higgs boson
 Phys. Lett. B 716 (2012) 1-29, our main contribution :
 - -- trigger efficiency and photon identification efficiency measurement
 - -- data-driven background decomposition
- Search for Standard Model Higgs boson in the $H \rightarrow Z\gamma$ decay mode with 7TeV and 8TeV data : ATLAS-CONF-2013-009 (https://cds.cern.ch/record/1523683)
 - -- mainly contributed by Giovanni M.(editor) and Kun L.(supporting note editor)

Back up

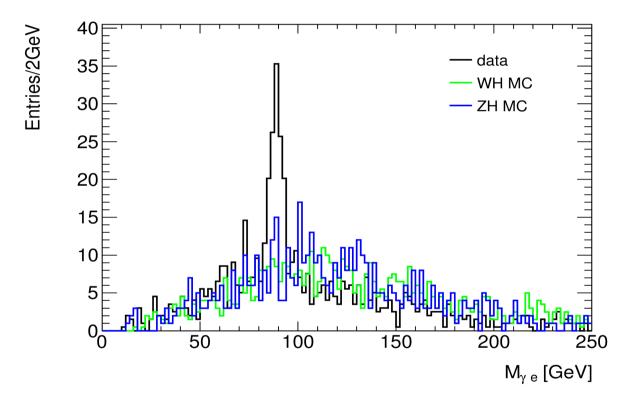
• Use lowest-threshold unprescaled lepton/dilepton triggers

Year/period	Electron triggers	Muon triggers	
2011 B-I	e20_medium	mu18_MG	
	2e12_medium	2mu10_loose	
2011 J	e20_medium	mu18_MG_medium	
	2e12_medium	2mu10_loose	
2011 K	e22_medium	mu18_MG_medium	
	2e12T_medium	2mu10_loose	
2011 L-M	e22vh_medium1	mu18_MG_medium	
	2e12Tvh_medium	2mu10_loose	
	e24vhi_medium1	mu24i_tight	
2012	e60_medium1	mu36_tight	
	2e12Tvh_loose1	mu18_tight_mu8_EFFS	

- Trigger requirement is the logical OR of the various chains used
- Efficiency relative to offline > 98% for eeγ, 92% for μμγ (calo/standalone muons not triggering + acceptance of muon trigger in barrel)


- Similar to $H \rightarrow 4I$
- Muons:
 - staco (stand-alone + segment-tagged + combined) or calo, passing tight ID
 - p_T>10 GeV (15 GeV for calo), |η|<2.7 (0.1 for calo)
 - recommended MCP cuts on hits in B-layer, pixel, SCT, TRT, MS
 - impact parameter: $|d_0| < 1 \text{ mm}$, $|z_0| < 10 \text{ mm}$
 - overlaps: remove duplicate muons reconstructed by different algos
- Electrons:
 - std. author, pass e/γ object quality (OQ) cuts, loose++ ID and hit in B-layer
 - Ε_T>10 GeV, |η|<2.47
 - overlaps: resolve e/m overlaps (same ID track), remove 2nd electron overlapping with higher-p_T electron
 - |z₀<10 mm

Event selection (III) -- photon and Z


- Photon: selection similar to $H \rightarrow \gamma \gamma$ (but lower threshold and no track isolation)
 - E_T^{γ} >15 GeV, $|\eta^{\gamma}|$ <2.37 (remove 1.37< $|\eta^{\gamma}|$ <1.52), $\Delta R_{I_{\gamma}}$ >0.3
 - pass e/γ OQ and photon cleaning requirements
 - tight ID (cut-based)
 - calorimeter isolation (based on topocluster) in cone $\Delta R=0.4 < 4 \text{ GeV}$
 - corrected for UE+pileup and out-of-cluster leakage
 - keep highest-E_T photon
- Z:
 - two same-flavor, opposite-sign leptons (at least one staco μ for $\mu\mu)$
 - keep pair with m_{ll} closest to m_Z, require m_{ll}>m_Z-10GeV (suppresses Drell-Yan and bkg from internal photon conversion in H→γγ*)
 - match reco leptons to trigger objects
 - isolation in calorimeter (ET^{cone20}/pT<0.15-0.3) and in tracker (pT^{cone20}/pT<0.15, removing contribution from the other lepton in cone)
 - d_0 significance < 3.5 (μ , except standalone) or < 6.5 (e)

Background modeling

• Using MII γ as discriminating variable, ~10% contamination of H $\rightarrow \mu^{\dagger}\mu^{-}$ is not negligible and peaks under signal peak(upper plots), while using MII γ -MII, the contamination is much smaller and does not peak under signal peak(bottom plots).

 VH category selection improvement from HCP to Moriond: we proposed Z mass window remove in this category by adding selection on Meγ to enhance WH/ZH signal's fraction.

 ${\scriptstyle \bullet}$ This selection gives 20% improvement on the error of μ $_{_{VH}}$, which is the

important improvement for $\pmb{\mu}_{_{VH}}$ measurement.