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Introduction

Quantum ChromoDynamics 
is The fundamental 

theory of  nuclear physics
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Introduction

How much of  this can 
we quantitatively connect 

to QCD?
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Introduction

QCD is the most perfect 
physical theory... until 
one wants to compute 
properties of  matter
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Neutrons and Protons are composed of  confined quarks 
and gluons

g g g2

quark-gluon
interactions

3- and 4-gluon
interactions

like electromagnetism responsible for non-perturbative 
nature

Introduction

QCD describes the 
interaction between 
quarks and gluons



αs(Q) =
g2(Q)

4π

low energy                                                                    high energy

Asymptotic 
Freedom

Strong
Coupling

Introduction

2004 Nobel Prize
David Gross

David Politzer
Frank Wilczek
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Quantum Mechanics:
uncertainty principle

small distance
=

large energy

Asymptotic 
Freedom

Strong
Coupling

take discretization scale to zero
we know the exact theory to put 
on the computer

a → 0

∼ L4

universe

Introduction
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small distance
=

large energy

Asymptotic 
Freedom

Strong
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take discretization scale to zero
we know the exact theory to put 
on the computer

a → 0

but tcomp ∼ 1
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Quantum Mechanics:
uncertainty principle

small distance
=

large energy

Asymptotic 
Freedom

Strong
Coupling

take discretization scale to zero
we know the exact theory to put 
on the computer

a → 0

We need BIG computers
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��L a

∼ L4

universe

Introduction

low energy                                                                    high energy



Quantum Mechanics:
uncertainty principle

small distance
=

large energy

Asymptotic 
Freedom

Strong
Coupling

state of  the art today:  

��
��L a

∼ L4

universe

lattice QCD calculations will 
really flourish in the exa-scale era

L = 64− 128

Introduction

low energy                                                                    high energy



Signal-to-noise degrades exponentially in time

numerical cost of  performing quark-level Wick 
contractions can be prohibitively expensive

Interpolating field overlap with eigenstates of  interest

large separation of  scales between interesting (binding) 
energies and total mass (A nucleons) requires very 
high statistics calculations

Finite Volume formalism for multi-hadron interactions 
only exists for two and three bodies:

Sig

Noise
∝

√
Ne−A(mN−3/2mπ)t

Challenges and Progress
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Challenges and Progress
Coupled Channels and Inelastic States

NN → NNπ

Calculations of  NN interactions with near 
physical pion masses and large volumes (8-10 
fm) requires an understanding of  coupled 
channels and use of  multiple operators
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Exp. N N , N- -

exp. local multi

local multi

C.Lang and V.Verduci 
PRD 87 (2013)

without including operators which couple to 
all relevant states - the spectrum is not 
determined correctly

�
(uTCγ5d)

1− γ4
2

u

�†
|0� = ZN− |N−�+ ZNπ|Nπ�+ . . .

�
(uTCγ5d)

1 + γ4
2

u

�†
[q̄τγ5q]

†|0� = Z �
N− |N−�+ Z �

Nπ|Nπ�+ . . .

local

multi-hadron
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Lattice QCD

Determine 2, 3, 4 body forces directly from QCD

N

Z ...

...



Lattice QCD

Determine 2, 3, 4 body forces directly from QCD

Many Body EFT

match onto many body effective field theory

N

Z ...

...
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E = 2
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m2 + p2 (two particles)
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Physical Review Letters – 22 April 2011.
Volume 106, Issue 16 

Evidence for a Bound H Dibaryon from Lattice QCD
S. R. Beane, E. Chang, W. Detmold, B. Joo, H. W. Lin, T. C. Luu, K. Orginos, 
A. Parreño, M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD Collaboration)
Published 20 April 2011 (4 pages), 162001.

Bound H Dibaryon in Flavor SU(3) Limit of Lattice QCD
Takashi Inoue, Noriyoshi Ishii, Sinya Aoki, Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, 
Keiko Murano, Hidekatsu Nemura, and Kenji Sasaki (HAL QCD Collaboration)
Published 20 April 2011 (4 pages), 162002.

H-Dibaryon |H� ∼ |ΛΛ� ∼ |uds uds�

HALQCD nf�3
NPLQCD nf�2�1

0.0 0.2 0.4 0.6 0.8
�20

�10

0

10

20

30

40

50

mΠ �GeV�

B H
�MeV

�



0

a −V0

0

a−V0

NN Interactions
1S0

3S1

di-neutron deuteron
Bd = 2.2245(2) MeV

a � 5.5 fma � −24 fm

threshold scattering is finely tuned

RNN ∼ 1

mπ
∼ 1.4 fm

�
lim
p→0

p cot δ(p) = −1

a

�

Status Report



NN Interactions
early calculations indicate the large scattering lengths relax for larger 

pion masses
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NN Interactions
more recent calculations, with higher statistics, have indicated 
the di-neutron even becomes bound
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NN Interactions
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NN Interactions
contrast with results from the HALQCD method 
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Fig. 1 Spin-singlet and triplet central and tensor potentials for even parity sector.
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Fig. 2 (Left) result of the fit and (right) scattering phases mπ ! 700, 570, 411 MeV. “lattice”
denotes the bare lattice data. “OPEP”, “T 2” and “WS” denote the contributions from the
first, the second and the third terms in the first line in Eq.(6), respectively.

The numerical results by using Eq.(5) at the leading order of derivative expan-
sion are shown in Fig.(1) for mπ = 701, 570, 411 MeV. We see that phenomenological
properties of nuclear forces are reproduced, i.e., the repulsive core at short distance is
surrounded by an attraction. As the quark mass decreases, (i) the repulsive core grows
(ii) the attractive pocket is enhanced and (iii) the strength of tensor force is enhanced.

We use a functional form of AV18 [1] for smooth parametrization of these potentials.
We perform a simultaneous fit of two VC(r) and one VT(r) by

VC;10(r) = −f2mπYc(r) + Ic
10T 2

c (r) +
(
P c

10 + (mπr)Qc
10 + (mπr)2Rc

10

)
Wr0,a(r)(6)

VC;01(r) = −f2mπYc(r) + Ic
01T 2

c (r) +
(
P c

01 + (mπr)Qc
01 + (mπr)2Rc

01

)
Wr0,a(r)

VT;01(r) = −f2mπTc(r) + It
01T 2

c (r) +
(
P t

01 + (mπr)Qt
01 + (mπr)2Rt

01

)
Wr0,a(r),

with 16 adjustable parameters: f2, c, r0, a, Ic
10, P c

10, Qc
10, Rc

10, Ic
01, P c

01, Qc
01, Rc

01, It
01,

P t
01, Qt

01, Rt
01. Suffixes “10” and “01” indicate T = 1, S = 0 and S = 1, T = 0, respec-

tively. Superindices “c” and “t” indicate “central” and “tensor”, respectively. Yc(r) ≡
(1 − e−cr2

)e−mπr/(mπr) denotes Yukawa function, and Tc(r) ≡ (1 − e−cr2
)2(1 +

3/(mπr) + 3/(mπr)2)e−mπr/(mπr) denotes Tensor function with Gaussian cutoff pa-
rameter c. Wr0,a(r) ≡ 1/(1 + e(r−r0)/a) denotes Woods-Saxon function. Our tensor
force has a cusp at r =

√
3a $ 0.16 fm, where smooth parametrization becomes diffi-

cult. To avoid this, we use r ≥
√

3a as the fitting region for the tensor force, whereas
linear interpolations are employed in the region r <

√
3a. As an attempt to take into

account the effect of periodic boundary, we use V̄C;10(r) ≡
∑

n∈Z3 VC;10(|r − Ln|),
V̄C;01(r) ≡

∑
n∈Z3 VC;01(|r − Ln|), and V̄T;01(r) ≡

∑
n∈Z3 VT;01(|r − Ln|), i.e., we

use V̄C;10(r), V̄C;01(r) and V̄T;01(r) on the finite torus to extract spherically symmetric
VC;10(r), VC;01(r) and VT;01(r), respectively. We show the result of the fit for spin-
singlet central force in Fig.(2) for mπ $ 570 MeV. We see that the lattice data is

!"#$%&'()*+,#-%*./!01

!  !"#$%&#'()$*+,)#-./#0$)+0)1#(%.,2++
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1S0

experimental

(Thanks to 
HALQCD)

Status Report
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NN Interactions
contrast with results from the HALQCD method 
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Fig. 1 Spin-singlet and triplet central and tensor potentials for even parity sector.
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Fig. 2 (Left) result of the fit and (right) scattering phases mπ ! 700, 570, 411 MeV. “lattice”
denotes the bare lattice data. “OPEP”, “T 2” and “WS” denote the contributions from the
first, the second and the third terms in the first line in Eq.(6), respectively.

The numerical results by using Eq.(5) at the leading order of derivative expan-
sion are shown in Fig.(1) for mπ = 701, 570, 411 MeV. We see that phenomenological
properties of nuclear forces are reproduced, i.e., the repulsive core at short distance is
surrounded by an attraction. As the quark mass decreases, (i) the repulsive core grows
(ii) the attractive pocket is enhanced and (iii) the strength of tensor force is enhanced.

We use a functional form of AV18 [1] for smooth parametrization of these potentials.
We perform a simultaneous fit of two VC(r) and one VT(r) by

VC;10(r) = −f2mπYc(r) + Ic
10T 2

c (r) +
(
P c

10 + (mπr)Qc
10 + (mπr)2Rc

10

)
Wr0,a(r)(6)

VC;01(r) = −f2mπYc(r) + Ic
01T 2

c (r) +
(
P c

01 + (mπr)Qc
01 + (mπr)2Rc

01

)
Wr0,a(r)

VT;01(r) = −f2mπTc(r) + It
01T 2

c (r) +
(
P t

01 + (mπr)Qt
01 + (mπr)2Rt

01

)
Wr0,a(r),

with 16 adjustable parameters: f2, c, r0, a, Ic
10, P c

10, Qc
10, Rc

10, Ic
01, P c

01, Qc
01, Rc

01, It
01,

P t
01, Qt

01, Rt
01. Suffixes “10” and “01” indicate T = 1, S = 0 and S = 1, T = 0, respec-

tively. Superindices “c” and “t” indicate “central” and “tensor”, respectively. Yc(r) ≡
(1 − e−cr2

)e−mπr/(mπr) denotes Yukawa function, and Tc(r) ≡ (1 − e−cr2
)2(1 +

3/(mπr) + 3/(mπr)2)e−mπr/(mπr) denotes Tensor function with Gaussian cutoff pa-
rameter c. Wr0,a(r) ≡ 1/(1 + e(r−r0)/a) denotes Woods-Saxon function. Our tensor
force has a cusp at r =

√
3a $ 0.16 fm, where smooth parametrization becomes diffi-

cult. To avoid this, we use r ≥
√

3a as the fitting region for the tensor force, whereas
linear interpolations are employed in the region r <

√
3a. As an attempt to take into

account the effect of periodic boundary, we use V̄C;10(r) ≡
∑

n∈Z3 VC;10(|r − Ln|),
V̄C;01(r) ≡

∑
n∈Z3 VC;01(|r − Ln|), and V̄T;01(r) ≡

∑
n∈Z3 VT;01(|r − Ln|), i.e., we

use V̄C;10(r), V̄C;01(r) and V̄T;01(r) on the finite torus to extract spherically symmetric
VC;10(r), VC;01(r) and VT;01(r), respectively. We show the result of the fit for spin-
singlet central force in Fig.(2) for mπ $ 570 MeV. We see that the lattice data is
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NN Interactions 1S0

Heavy pion mass:

NPLQCD finds a bound state
Yamazaki et.al. find a bound state
HALQCD does NOT find a bound state

my speculation: HALQCD does not have enough 
statistics to resolve the long-range potential, which 
contributes significantly to the low-energy phase shift
HALQCD method includes more systematics that are 
difficult to quantify - see review talk at Lattice 2013: 
AWL - “Nuclear Physics Review”

(mπ � 390 MeV)
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Status Report

While nuclear “potentials” from lattice QCD may 
warm the heart, the technique introduces further 
systematics which are difficult to quantify, and most 
likely not under control at the moment.

It is now up to HALQCD to demonstrate their 
technique is in agreement with the standard 
“Lüscher” method.

Before this demonstration, be cautious drawing 
conclusions.



a ∼ 0.145 fm

Light NucleiNPLQCD, PRD 87 (2013)
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New contraction codes were developed and tested with 
heavy pion masses (numerically cheap).
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Status Report
Significant experimental effort to study hyper-nuclei:

JLAB, JPARC, FAIR, ...

Hyper-nuclear interactions and Hyperon-Hyperon 
interactions provide an opportunity for lattice QCD to 
make significant contributions as the experimental 
understanding is much more limited due to the weak 
decays (also 3-nucleon forces)

See recent HypHI 
Collaboration results:
evidence for 
PRC 88 041001(R)

3
Λn



Quarks, Nuclei and the Early Universe

Isospin violation and Big Bang Nucleosynthesis

(subset of  what Ulf  Meißner discussed Sunday)



Isospin Breaking: Mn - Mp

Nature: CODATA
PDG (2012)

Mn −Mp = 1.29333217(42) MeV

Given only electro-static forces, one would predict

Mp > Mn

Standard Model has two sources of isospin breaking

Q̂ =
1

6
11 +

1

2
τ3 mq = m̂11− δτ3

The contribution from                is comparable in size 
but opposite in sign

md −mu



Isospin Breaking: Mn - Mp

Mn - Mp plays an extremely significant role in the evolution 
of the universe as we know it

The neutron lifetime is highly sensitive to the value of this 
mass splitting

Initial conditions for Big Bang 
Nucleosynthesis (BBN)

f(a) � 1

15

�
2a4 − 9a2 − 8

��
a2 − 1 + a ln

�
a+

�
a2 − 1

�

Griffiths “Introduction to Elementary Particles”

Point Nucleons

10% change in                 corresponds to ~100% change 
neutron lifetime

Mn −Mp

Xn

Xp
= e−

Mn−Mp
T

1

τn
=

(GF cosθC)2

2π3
m5

e(1 + 3g2A) f

�
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me
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Isospin Breaking: Mn - Mp

t ∼ 1 sec t ∼ 3 min
T ∼ 1 MeV T ∼ 0.1 MeV

e−
ν̄e

t ∼ 15min
T ∼ 0.1− MeV
t ∼ 3+ min

Bd τn

T ∼ 0.01 MeV

Initial conditions
deuterium 
binding energy

neutron 
lifetime

Xn

Xp
= e−

Mn−Mp
T

Big Bang Nucleosynthesis



Isospin Breaking: Mn - Mp

No Sun!

0.6 0.8 1.0 1.2 1.4

mn −mp [MeV]
0.0

0.2

0.4

0.6
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1.0

proton mass fraction
4He mass fraction
low metalicity HII
CMB constraint

Mn −Mp

Too many suns?



Isospin Breaking: Mn - Mp

Alternative means to determine
Cottingham Formulation 

We would like to understand the Neutron-Proton mass 
splitting from first principles

Well understood from lattice QCD

Disparate scales relevant for QCD and QED 
make this a very challenging problem to solve 
with LQCD: large systematic uncertainties

Separation only valid at LO 
in isospin breaking

δMmd−mu

δMγ

δMγ

What do we know?

Mn −Mp = δMγ + δMmd−mu



Isospin Breaking: Mn - Mp What do we know?
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The Electromagnetic Self-Energy Contribution to Mp −Mn

and the Isovector Nucleon Magnetic Polarizability

André Walker-Loud,1, 2 Carl E. Carlson,3 and Gerald A. Miller1, 4
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We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading
order in QED. A technical oversight in the literature concerning the elastic contribution to Cotting-
ham’s formula is corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find δMγ

p−n = 1.30(03)(47) MeV. The largest uncertainty
arises from a subtraction term required in the dispersive analysis, which can be related to the isovec-
tor magnetic polarizability. With plausible model assumptions, we can combine our calculation with
additional input from lattice QCD to constrain this polarizability as: βp−n = −0.87(85)× 10−4fm3.

PACS numbers: 13.40.Dk, 13.40.Ks, 13.60.Fz, 14.20.Dh

Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn −Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The effects of the mass difference between down and up
quarks are larger and of the opposite sign than those of
electromagnetic effects, see the reviews [5–7]. The net
result of the quark mass difference and electromagnetic
effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, δMγ , can be
related to the spin averaged forward Compton scattering
tensor

Tµν =
i

2

�

σ

�
d4ξ eiq·ξ�pσ|T {Jµ(ξ)Jν(0)} |pσ� , (2)

integrated with the photon propagator over space-time

δMγ =
i

2M

α

(2π)3

�

R
d4q

Tµ
µ (p, q)

q2 + i�
, (3)

where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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arises from a subtraction term required in the dispersive analysis, which can be related to the isovec-
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Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn −Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The effects of the mass difference between down and up
quarks are larger and of the opposite sign than those of
electromagnetic effects, see the reviews [5–7]. The net
result of the quark mass difference and electromagnetic
effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, δMγ , can be
related to the spin averaged forward Compton scattering
tensor

Tµν =
i

2
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σ
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d4ξ eiq·ξ�pσ|T {Jµ(ξ)Jν(0)} |pσ� , (2)

integrated with the photon propagator over space-time
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, (3)

where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn −Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The effects of the mass difference between down and up
quarks are larger and of the opposite sign than those of
electromagnetic effects, see the reviews [5–7]. The net
result of the quark mass difference and electromagnetic
effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
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where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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After some manipulations, renormalization and a subtracted dispersion integral

δMγ
p−n[MeV] = 0.83(03)− 3βp−n
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0
dQ2Q2f(Q2) lim
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2.49(12) weighted average

What do we know?

δMmd−mu
n−p = 2.49(12) MeV



Isospin Breaking: Mn - Mp

1.5 2.0 2.5 3.0 3.5

δMmd−mu
n−p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.49(12) weighted average

What do we know?

δMmd−mu
n−p = 2.49(12) MeV

1.40(03)(47) MeV
δMγ

p−n = Mp −Mn − δMmd−mu
p−n = 1.20(12) MeV

[AWL, C.Carlson, G.Miller PRL 108 (2012)                                               ]   



Strong Isospin Breaking: md - mu

C.Aubin,W.Detmold, 
Emanuele Mereghetti,
K.Orginos, S.Syritsyn, 

B.Tiburzi,
AWL

lattice QCD calculation performed 
using the Spectrum Collaboration 
anisotropic clover-Wilson gauge 
ensembles (developed @ JLAB)

ensemble mπ mK atδ [Ncfg ×Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 500 647 207× 16 207× 16 207× 16 207× 16

16 128 -0.0840 -0.0743 426 608 166× 25 166× 25 166× 25 166× 50

20 128 -0.0840 -0.0743 426 608 120× 25 – – –

24 128 -0.0840 -0.0743 426 608 97× 25 – 193× 25 –

32 256 -0.0840 -0.0743 426 608 291× 10 291× 10 291× 10 –

24 128 -0.0860 -0.0743 244 520 118× 26 – – –

32 256 -0.0860 -0.0743 244 520 842× 11 – – –

ensemble parameters valence quark masses

volume atml atms

163 × 128 -0.0830 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

163 × 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010, 0.0020}

atmval
s = atms

203 × 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms

243 × 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms

323 × 256 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

323 × 256 -0.0860 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-

laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of

important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim

of this work is to perform a detailed analysis of the scale setting, the quark mass renor-

malization and the light-quark mass dependence of the ground state hadron spectrum. The

HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice

spacing with fixed renormalized anisotropy ξ = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, Ω− and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest

light quark mass dependence of all the baryons. The strategy is to extrapolate atmΩ(lΩ, sΩ)

3

MΩ scale setting

PRELIMINARY
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pion mass

no evidence for 
deviations from linear
     dependenceδ



Strong Isospin Breaking: md - mu

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

atδ
0

2

4

6

8

10

12

14

16

δM
m

d
−
m

u
n
−
p

[M
eV

]

mπ � 244 MeV
mπ � 426 MeV
mπ � 498 MeV

δMmd−mu
n−p = δ

�
α

�
1− m2

π

(4πfπ)2
(6g2A + 1) ln

�
m2

π

µ2

��

+ β(µ)
2m2

π

(4πfπ)2

�

PRELIMINARY

δMmd−mu
n−p = δ

�
α+ β

m2
π

(4πfπ)2

�

χ2/dof = 13/5 = 2.6

trial fit functions
NNLO χPTpolynomial in m2

π

(gA = 1.27, fπ = 130 MeV)

χ2/dof = 1.66/5 = 0.33

0.0 0.1 0.2 0.3 0.4 0.5

mπ/(2
√
2πf0)

1.6

1.8

2.0

2.2

2.4

δM
m

d
−
m

u
n
−
p

/δ
la
tt

mπ � 244 MeV
mπ � 426 MeV
mπ � 498 MeV



Strong Isospin Breaking: md - mu

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

atδ
0

2

4

6

8

10

12

14

16

δM
m

d
−
m

u
n
−
p

[M
eV

]

mπ � 244 MeV
mπ � 426 MeV
mπ � 498 MeV

gA = 1.50(.29)

PRELIMINARY

δMmd−mu
n−p = δ

�
α+ β

m2
π

(4πfπ)2

�

χ2/dof = 13/5 = 2.6

trial fit functions
NNLO χPTpolynomial in m2

π

(fπ = 130 MeV)

χ2/dof = 1.34/4 = 0.33

δMmd−mu
n−p = δ

�
α

�
1− m2

π

(4πfπ)2
(6g2A + 1) ln

�
m2

π

µ2

��

+ β(µ)
2m2

π

(4πfπ)2

�

0.0 0.1 0.2 0.3 0.4 0.5

mπ/(2
√
2πf0)

1.6

1.8

2.0

2.2

2.4

δM
m

d
−
m

u
n
−
p

/δ
la
tt

mπ � 244 MeV
mπ � 426 MeV
mπ � 498 MeV



Strong Isospin Breaking: md - mu

0.0 0.1 0.2 0.3 0.4 0.5

mπ/(2
√
2πf0)

1.6

1.8

2.0

2.2

2.4

δM
m

d
−
m

u
n
−
p

:m
π
≤

42
6

mπ � 244 MeV
mπ � 426 MeV
mπ � 498 MeV

PRELIMINARY

NNLO χPT

(gA = 1.27, fπ = 130 MeV)

δMmd−mu
n−p = δ

�
α

�
1− m2

π

(4πfπ)2
(6g2A + 1) ln

�
m2

π

µ2

��

+ β(µ)
2m2

π

(4πfπ)2

�

exclude heavy mass 
point

C.Aubin,W.Detmold, 
Emanuele Mereghetti,
K.Orginos, S.Syritsyn, 

B.Tiburzi,
AWL

χ2/dof = 1.66/5 = 0.33

this is striking evidence of  a chiral logarithm
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Big Bang Nucleosynthesis and Mn −Mp

Mn −Mp = δMγ
n−p + δMmd−mu

n−p

= −178(04)(64) MeV× αf.s. + 1.01(5)(9)× (md −mu)
(lattice average)

my value hopefully more 
precise



Big Bang Nucleosynthesis and Mn −Mp

Mn −Mp = δMγ
n−p + δMmd−mu

n−p

= −178(04)(64) MeV× αf.s. + 1.01(5)(9)× (md −mu)
(lattice average)

my value hopefully more 
precise

for now - freeze electromagnetic coupling and just look 
at effects of quark mass splitting

Big Bang Nucleosynthesis highly constrains variation of
and hence variation of fundamental constants

Mn −Mp



Big Bang Nucleosynthesis and Mn −Mp

t ∼ 1 sec t ∼ 3 min
T ∼ 1 MeV T ∼ 0.1 MeV
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t ∼ 3+ min

Bd τn

T ∼ 0.01 MeV

Initial conditions
deuterium 
binding energy

neutron 
lifetime

Xn

Xp
= e−

Mn−Mp
T



Big Bang Nucleosynthesis and Mn −Mp

t ∼ 1 sec t ∼ 3 min
T ∼ 1 MeV T ∼ 0.1 MeV

e−
ν̄e

t ∼ 15min
T ∼ 0.1− MeV
t ∼ 3+ min

τn

T ∼ 0.01 MeV

Initial conditions
neutron 
lifetime

Xn

Xp
= e−

Mn−Mp
T

focus on leading 
isospin breaking



Big Bang Nucleosynthesis and Mn −Mp
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Big Bang Nucleosynthesis and Mn −Mp
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Big Bang Nucleosynthesis and Mn −Mp
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PRELIMINARY

Lattice 
QCD

A precise determination of     + BBN can constrain md −muα

δMmd−mu
n−p ≡ α(md −mu) connect the quarks with the cosmos

P. Banerjee, T. Luu, 
S. Syritsyn  AWL



After decades of  dedicated effort, lattice QCD is now a tool for 
reliably computing basic QCD observables

The challenges of  extending these calculations to observables 
relevant to nuclear physics mean it will still be a few years before 
lattice QCD can make the same impact

We are beginning to see the role lattice QCD can play in making a 
quantitative connection between the quarks and the cosmos - stay 
tuned!

Many more things to come
hyperon-nucleon interactions
hadronic parity violation
direct dark matter detection
nuclear EDMs
...

Conclusions



Thank You!



Methods and Results
NN Interactions 1S0
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Given a set of  gauge fields - one performs measurements
consider a proton

uu

d

proton

-

+

D−1
W

xi

xixf

xf

contractions

“wave 
functions”

quark-exchange diagrams are source 
of  fermion sign problem

2!× 1! = 2

quark
propagator



Given a set of  gauge fields - one performs measurements
consider a deuteron

uu

d

proton

+ xixf

contractions

u d

d

neutron

- xixf

+...

3!× 3! = 36



Given a set of  gauge fields - one performs measurements
consider a 4He

uu

d

proton

contractions

u d

d

neutron

+...

6!× 6! = 518400

xixf

u d

d

neutron

uu

d

proton

Not entirely fair - lots of  
symmetry to reduce the 
number of  contractions
the point is these 
contraction costs are quite 
significant

T. Doi and M. Endres,  Comp. Phys. Comm. 184 (2013)
W. Detmold and K. Orginos, PRD 87 (2013)
J. Günther, B.C. Toth and L.Varnhorst PRD 87 (2013)


