Recent developments on hadron interaction and dynamically generated resonances

E. Oset, A. Ramos, Xie Ju Jun, M. Albaladejo, R. Molina, J. Garzon, Chu Wen Xiao, J.J. Wu, B.S. Zou

Chiral dynamics and the local hidden gauge approach Meson-meson interaction (vector-vector interaction)

Vector baryon interaction
Vector- Vector and Vector-Baryon molecules
Evidence for a new h_{1} state around 1820 MeV
The $\mathrm{yp} \rightarrow \mathrm{K}^{0} \sum^{+}$and $\mathrm{\gamma n} \rightarrow \mathrm{~K}^{0} \sum^{0}$ in the $\mathrm{K}^{*} \Lambda$ threshold \rightarrow Evidence for a new baryon resonance $1 / 2$ - around 2035 MeV Recent developments in the charm and beauty sectors

Hidden gauge formalism for vector mesons, pseudoscalars and photons Bando et al. PRL, 112 (85); Phys. Rep. 164, 217 (88) Meissner, U.G., Phys. Rep. 161,213 (88)

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}^{(2)}+\mathcal{L}_{I I I} \tag{1}
\end{equation*}
$$

with

$$
\begin{gather*}
\mathcal{L}^{(2)}=\frac{1}{4} f^{2}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right\rangle \tag{2}\\
\mathcal{L}_{I I I}=-\frac{1}{4}\left\langle V_{\mu \nu} V^{\mu \nu}\right\rangle+\frac{1}{2} M_{V}^{2}\left\langle\left[V_{\mu}-\frac{i}{g} \Gamma_{\mu}\right]^{2}\right\rangle, \tag{3}
\end{gather*}
$$

where $\langle\ldots\rangle$ represents a trace over $S U(3)$ matrices. The covariant derivative is defined by

$$
\begin{equation*}
D_{\mu} U=\partial_{\mu} U-i e Q A_{\mu} U+i e U Q A_{\mu}, \tag{4}
\end{equation*}
$$

with $Q=\operatorname{diag}(2,-1,-1) / 3, e=-|e|$ the electron charge, and A_{μ} the photon field. The chiral matrix U is given by

$$
\begin{gather*}
U=e^{i \sqrt{2} \phi / f} \tag{5}\\
\phi \equiv\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & & \bar{K}^{0} \\
& & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right), V_{\mu} \equiv\left(\begin{array}{cccc}
\frac{1}{\sqrt{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{\sqrt{2}}} \omega} & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} \\
K^{*-} & & \bar{K}^{* 0} & \phi
\end{array}\right) . \tag{6}
\end{gather*}
$$

In $\mathcal{L}_{I I I}, V_{\mu \nu}$ is defined as

$$
\begin{equation*}
V_{\mu \nu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}-i g\left[V_{\mu}, V_{\nu}\right] \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{\mu}=\frac{1}{2}\left[u^{\dagger}\left(\partial_{\mu}-i e Q A_{\mu}\right) u+u\left(\partial_{\mu}-i e Q A_{\mu}\right) u^{\dagger}\right] \tag{10}
\end{equation*}
$$

with $u^{2}=U$. The hidden gauge coupling constant g is related to f and the vector meson mass (M_{V}) through

$$
\begin{gather*}
g=\frac{M_{V}}{2 f}, \tag{11}\\
\mathcal{L}_{V \gamma}=-M_{V}^{2} \frac{e}{g} A_{\mu}\left\langle V^{\mu} Q\right\rangle \\
\mathcal{L}_{V \gamma P P}=e \frac{M_{V}^{2}}{4 g f^{2}} A_{\mu}\left\langle V^{\mu}\left(Q \phi^{2}+\phi^{2} Q-2 \phi Q \phi\right)\right\rangle \\
\mathcal{L}_{V P P}=-i \frac{M_{V}^{2}}{4 g f^{2}}\left\langle V^{\mu}\left[\phi, \partial_{\mu} \phi\right]\right\rangle \\
\mathcal{L}_{I I I}^{(c)}=\frac{g^{2}}{2}\left\langle V_{\mu} V_{\nu} V^{\mu} V^{\nu}-V_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle, \quad \mathcal{L}_{I I I}^{(3 V)}=i g\left\langle\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right\rangle,
\end{gather*}
$$

Rho-rho interaction in the hidden gauge approach R.Molina, D. Nicmorus, E. O. PRD (08)

Spin projectors neglecting $\mathrm{q} / \mathrm{M}_{\mathrm{V}}, \quad \mathcal{P}^{(1)}=\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}-\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right)$
in $\mathrm{L}=0$

$$
\mathcal{P}^{(2)}=\left\{\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}+\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right)-\frac{1}{3} \epsilon_{\alpha} \epsilon^{\alpha} \epsilon_{\beta} \epsilon^{\beta}\right\}
$$

Bethe Salpeter eqn.

$$
T=\frac{V}{1-V G} \quad \mathrm{G} \text { is the } \rho \rho \text { propagator }
$$

Two I=0 states generated $\mathrm{f}_{0}, \mathrm{f}_{2}$ that we associate to $f_{0}(1370)$ and $f_{2}(1270)$

Belle finds the fO(1370) around 1470 MeV

Generalization to coupled channels: L. S. Geng , E.O, Phys Rev D 09
Attraction found in many channels

Predicted meson states from V V interaction

$I^{G}\left(J^{P C}\right)$	$\mathrm{M}, \Gamma[\mathrm{MeV}]$ Theor			PDG data		
	Pole position	Real axis		Name	Mass	Width
		$\Lambda_{b}=1.4 \mathrm{GeV}$	$\Lambda_{b}=1.5 \mathrm{GeV}$			
$0^{+}\left(0^{++}\right)$	$(1512,51)$	$(1523,257)$	$(1517,396)$	$f_{0}(1370)$	$1200 \sim 1500$	200~500
$0^{+}\left(0^{++}\right)$	$(1726,28)$	$(1721,133)$	$(1717,151)$	$f_{0}(1710)$	1724 ± 7	137 ± 8
$0^{-}\left(1^{+-}\right)$	$(1802,78)$	$(1802,49)$		h_{1}		
$0^{+}\left(2^{++}\right)$	$(1275,2)$	$(1276,97)$	$(1275,111)$	$f_{2}(1270)$	1275.1 ± 1.2	$185.0_{-2.4}^{+2.9}$
$0^{+}\left(2^{++}\right)$	$(1525,6)$	$(1525,45)$	$(1525,51)$	$f_{2}^{\prime}(1525)$	1525 ± 5	73_{-5}^{+6}
$1^{-}\left(0^{++}\right)$	$(1780,133)$	$(1777,148)$	$(1777,172)$	a_{0}		
$1^{+}\left(1^{+-}\right)$	$(1679,235)$	$(1703,188)$		b_{1}		
$1^{-}\left(2^{++}\right)$	$(1569,32)$	$(1567,47)$	(1566,51)	$a_{2}(1700) ?$?	(1320)	iro PR
$1 / 2\left(0^{+}\right)$	$(1643,47)$	$(1639,139)$	$(1637,162)$	K_{0}^{*}		
$1 / 2\left(1^{+}\right)$	$(1737,165)$			$K_{1}(1650) ?$		
$1 / 2\left(2^{+}\right)$	(1431,1)	$(1431,56)$	$(1431,63)$	$K_{2}^{*}(1430)$	1429 ± 1.4	104 ± 4

Signature of an h_{1} state in the $J / \psi \rightarrow \eta h_{1} \rightarrow \eta K^{* 0} \bar{K}^{* 0}$ decay
Xie Ju Jun, M. Albaladejo and E. O, 2013

$I^{G}\left(J^{P C}\right)$
$0^{-}\left(1^{+-}\right.$
$(1802,78)$
$(1802,49)$

Pole positions and residues in the strangeness $=0$ and isospin $=0$ channel. All quantities are in units of MeV .
$(1802,-i 39)$ [spin=1]

	$K^{*} \bar{K}^{*}$	$\rho \rho$	$\omega \omega$	$\omega \phi$	$\phi \phi$
g	$(8034,-i 2542)$	0	0	0	0

does not go to VV because of C-parity It cannot go to PP , because J=1 requires L=1 in PP -> negative parity Thus K* K*bar is the only open channel
M.Ablikim et al. [BES Collaboration], Phys. Lett. B 685, 27 (2010).

$$
\left.\frac{d \Gamma}{d M_{\text {inv }}}=\frac{C}{\left|v\left(M_{\text {inv }}^{2}\right)\right|^{2}} \frac{p_{1} \widetilde{p}_{2}}{M_{J / \psi}} \right\rvert\, t\left(M_{\text {inv }}^{2}\right)^{2}
$$

A fit to data is made changing $\mathrm{a}(\mu)$

$$
M_{h_{1}}=1830 \pm 20 \mathrm{MeV} \text { and } \Gamma_{h_{1}}=110 \pm 10 \mathrm{MeV}
$$

$$
\begin{aligned}
& t=v+v \widetilde{G} t=v(1+\widetilde{G} t)=(1-v \widetilde{G})^{-1} v=\left(v^{-1}-\widetilde{G}\right)^{-1} \\
& v=\left(9+b\left(1-\frac{3 M_{\mathrm{inv}}^{2}}{4 m_{K^{*}}^{2}}\right)\right) g^{2} \\
& t_{P}=V_{P}\left(1+\widetilde{G}\left(M_{\mathrm{inv}}^{2}\right) t\left(M_{\mathrm{inv}}^{2}\right)\right)=V_{P} \frac{t\left(M_{\mathrm{inv}}^{2}\right)}{v\left(M_{\mathrm{inv}}^{2}\right)} \\
& g=m_{\rho} / 2 f \\
& G=\frac{1}{16 \pi^{2}}\left(\alpha+\log \frac{m_{1}^{2}}{\mu^{2}}+\frac{m_{2}^{2}-m_{1}^{2}+s}{2 s} \log \frac{m_{2}^{2}}{m_{1}^{2}}\right. \\
& \left.+\frac{p}{\sqrt{s}}\left(\log \frac{s-m_{2}^{2}+m_{1}^{2}+2 p \sqrt{s}}{-s+m_{2}^{2}-m_{1}^{2}+2 p \sqrt{s}}+\log \frac{s+m_{2}^{2}-m_{1}^{2}+2 p \sqrt{s}}{-s-m_{2}^{2}+m_{1}^{2}+2 p \sqrt{s}}\right)\right) \\
& \mu=1000 \mathrm{MeV} \\
& a(\mu)=\alpha
\end{aligned}
$$

Extension to the baryon sector

$$
\begin{aligned}
& \mathcal{L}_{B B V}=-\frac{g}{2 \sqrt{2}}\left(\operatorname{tr}\left(\bar{B} \gamma_{\mu}\left[V^{\mu}, B\right]+\operatorname{tr}\left(\bar{B} \gamma_{\mu} B\right) \operatorname{tr}\left(V^{\mu}\right)\right)\right. \\
& \text { Vector propagator } 1 /\left(\mathrm{q}^{2}-\mathrm{M}_{\mathrm{v}}^{2}\right)
\end{aligned}
$$

In the approximation $\mathrm{q}^{2} / \mathrm{M}_{\mathrm{v}}{ }^{2}=0$ one recovers the chiral Lagrangians Weinberg-Tomozawa term. For consistency, for vectors we take $\vec{q} / M_{v}=0$

A. Ramos, E. O. EPJA 10

Khemchandani, Hosaka, Kaneko, Martinez, Nagahiro, PRD 11

Kolomeitsev et al

J. Vijande, P. Gonzalez. E.O PRC,2009
Sarkar, Vicente Vacas, B.X.Sun, E.O, EPJA 10

Vector octet - baryon octet interaction

$$
\begin{aligned}
\mathcal{L}_{I I I}^{(3 V)} & =i g\left\langle V^{\nu} \partial_{\mu} V_{\nu} V^{\mu}-\partial_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle \\
& =i g\left\langle V^{\mu} \partial_{\nu} V_{\mu} V^{\nu}-\partial_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle \\
& =i g\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right) V^{\nu}\right\rangle, \\
\mathcal{L}_{V P P}=-i g \operatorname{tr}\left(\left[P, \partial_{\mu} P\right] V^{\mu}\right) \quad & B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right)
\end{aligned}
$$

V^{V} cannot correspond to an external vector.
Indeed, external vectors have only spatial components in the approximation of neglecting three momenta, $\varepsilon^{0}=\mathrm{k} / \mathrm{M}$ for longitudinal vectors, $\varepsilon^{0}=0$ for transverse vectors. Then ∂_{v} becomes three momentum which is neglected. \rightarrow V^{V} corresponds to the exchanged vector. \rightarrow complete analogy to VPP Extra $\varepsilon_{\mu} \varepsilon^{\mu}=-\varepsilon_{i} \varepsilon_{i}$ but the interaction is formally identical to the case of $\mathrm{PB} \rightarrow \mathrm{PB}$
In the same approximation only y^{0} is kept for the baryons \rightarrow the spin dependence is only $\varepsilon_{i} \varepsilon_{i}$ and the states are degenerate in spin $1 / 2$ and $3 / 2$

$$
V_{i j}=-C_{i j} \frac{1}{4 f^{2}}\left(k^{0}+k^{\prime 0}\right) \overrightarrow{\epsilon \epsilon}
$$

We solve the Bethe Salpeter equation in coupled channels Vector-Baryon octet. $\mathrm{T}=(1-\mathrm{GV})^{-1} \mathrm{~V}$
with G the loop function of vector-baryon
Apart from the peaks, poles are searched In the second Riemann sheet and pole positions and residues are determined.

The G function takes into account the mass distribution of the vectors (width).

$$
\begin{aligned}
G_{(P, B)}= & i 2 M_{B} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{(P-q)^{2}-M_{B}^{2}+i \varepsilon} \frac{1}{q^{2}-M_{P}^{2}+i \varepsilon}, \\
= & \frac{2 M_{B}}{16 \pi^{2}}\left\{a_{\mu}+\ln \frac{M_{B}^{2}}{\mu^{2}}+\frac{M_{P}^{2}-M_{B}^{2}+s}{2 s} \ln \frac{M_{P}^{2}}{M_{B}^{2}}\right. \\
& +\frac{\bar{q}}{\sqrt{s}}\left[\ln \left(s-\left(M_{B}^{2}-M_{P}^{2}\right)+2 \bar{q} \sqrt{s}\right)+\ln \left(s+\left(M_{B}^{2}-M_{P}^{2}\right)+2 \bar{q} \sqrt{s}\right)\right. \\
& \left.\left.-\ln \left(-s-\left(M_{B}^{2}-M_{P}^{2}\right)+2 \bar{q} \sqrt{s}\right)-\ln \left(-s+\left(M_{B}^{2}-M_{P}^{2}\right)+2 \bar{q} \sqrt{s}\right)\right]\right\}
\end{aligned}
$$

a_{μ} is a subtraction constant that regularizes the loop

S, I	Theory		PDG data				
	(real axis)	name	J^{P}	status	mass	width	
	mass	width					
$0,1 / 2$	1699	84	$N(1650)$	$1 / 2^{-}$	$\star \star \star \star$	$1645-1670$	$145-185$
			$N(1700)$	$3 / 2^{-}$	$\star \star \star$	$1650-1750$	$50-150$
	1967	82	$N(2080)$	$3 / 2^{-}$	$\star \star$	≈ 2080	$180-450$
			$N(2090)$	$1 / 2^{-}$	\star	≈ 2090	$100-400$
$-1,0$	1783	8	$\Lambda(1690)$	$3 / 2^{-}$	$\star \star \star \star$	$1685-1695$	$50-70$
			$\Lambda(1800)$	$3 / 2^{-}$	$\star \star \star$	$1720-1850$	$200-400$
	1900	54	$\Lambda(2000)$	$?^{?}$	\star	≈ 2000	$73-240$
	2158	20					
$-1,1$	1830	44	$\Sigma(1750)$	$1 / 2^{-}$	$\star \star \star$	$1730-1800$	$60-160$
	1985	244	$\Sigma(1940)$	$3 / 2^{-}$	$\star \star \star$	$1900-1950$	$150-300$
			$\Sigma(2000)$	$1 / 2^{-}$	\star	≈ 2000	$100-450$
$-2,1 / 2$	2030	52	$\Xi(2030)$	$? ?$	$\star \star \star$	2025 ± 5	21 ± 6
	2080	24	$\Xi(2120)$	$? ?$	\star	≈ 2120	25

Table 1: The properties of the 9 dynamically generated resonances and their possible PDG counterparts.

Improvements needed to account for the width: E. J. Garzon, E. O, EPJA 12

Other works that consider the mixing between PB and VB

Romanets, Tolos, Garcia Recio, Nieves, Salcedo, Timmermanns, 2012 SU(6), $\mathrm{SU}(8)$ spin symmetry

Khemchandani, Martinez, Nagahiro, Kaneko, Hosaka, 2011 Gauge terms from anomalous coupling of vector mesons to baryons

Kolomeitsev, Lutz some work in 3/2- sector

The role of vector-baryon channels and resonances in the $\gamma p \rightarrow K^{0} \Sigma^{+}$and $\gamma n \rightarrow K^{0} \Sigma^{0}$ reactions near the $K^{*} \Lambda$ threshold.
A. Ramos and E. Oset, Phys. Lett B 2013

$$
\mathrm{E}_{\gamma}[\mathrm{MeV}]
$$

CBELSA/TAPS
R. Ewald.....
H. Schmieden..... PLB 2012

Sudden drop of cross section around $K^{*} \wedge$ threshold Angular dependence also becomes flat around this energy Hints at an important role of vector baryon interaction in L=0

Standard models MAID, SAID fail badly to reproduce these features

We use the tools of the local hidden gauge formalism to describe the reaction

$$
\begin{aligned}
& \xrightarrow[N]{\gamma(p)} \\
& \text { Tree level is null with } \\
& \text { final } K^{0} \\
& \mathcal{L}_{P B B}=\frac{1}{2}(D+F)\left\langle\bar{B} \gamma^{\mu} \gamma^{5} u_{\mu} B\right\rangle+\frac{1}{2}(D-F)\left\langle\bar{B} \gamma^{\mu} \gamma^{5} B u_{\mu}\right\rangle \\
& \gamma^{\mu} \gamma^{5} u_{\mu} \rightarrow \frac{\sqrt{2}}{f} \sigma^{i} \partial_{i} \phi \\
& \begin{aligned}
-i t_{\gamma N \rightarrow K^{0} \Sigma}^{\pi-\text { pole }}= & e \sum_{V=\rho^{0}, \omega, \phi} \mathcal{C}_{\gamma V} \sum_{V^{\prime} B^{\prime}} t_{V N \rightarrow V^{\prime} B^{\prime}} i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{(q+k)^{2}-M_{V^{\prime}}^{2}+i \varepsilon} \frac{1}{q^{2}-m_{\pi}^{2}+i \varepsilon} \\
& \frac{M_{B^{\prime}}}{E_{B^{\prime}}} \frac{1}{P^{0}-q^{0}-k^{0}-E_{B^{\prime}}(\vec{q}+\vec{k})+i \varepsilon}(\vec{q}-\vec{k}) \vec{\epsilon} \vec{\epsilon}_{\gamma} \vec{\sigma} \vec{q} V_{Y, B^{\prime}} F(q),
\end{aligned} \\
& \mathcal{C}_{\gamma V}= \begin{cases}\frac{1}{\sqrt{2}} & \text { for } V=\rho \\
\frac{1}{3 \sqrt{2}} & \text { for } V=\omega \\
-\frac{1}{3} & \text { for } V=\phi\end{cases}
\end{aligned}
$$

$$
-i t_{\gamma N \rightarrow K^{0} \Sigma}^{K R}=e \sum_{V=\rho^{0}, \omega, \phi} \mathcal{C}_{\gamma V} \sum_{V^{\prime} B^{\prime}} t_{V N \rightarrow V^{\prime} B^{\prime}} i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{(q+k)^{2}-M_{V^{\prime}}^{2}+i \varepsilon}
$$

$$
\frac{M_{B^{\prime}}}{E_{B^{\prime}}} \frac{1}{P^{0}-q^{0}-k^{0}-E_{B^{\prime}}(\vec{q}+\vec{k})+i \varepsilon} \vec{\sigma} \vec{\epsilon}_{\gamma} V_{Y, B^{\prime}} F(q) .
$$

(a)

(b)

$$
\frac{d \sigma_{\gamma N \rightarrow K^{0} \Sigma}}{d \Omega}=\frac{1}{16 \pi^{2}} \frac{M_{N} M_{\Sigma}}{s} \frac{k}{p} \sum \sum\left|t_{\gamma N \rightarrow K^{0} \Sigma}^{K R}\right|^{2}
$$

A term comes from т-exchange. B term from Kroll Ruderman plus part of π-exchange.
Angular dependence is symmetrical with respect to $\pi / 2$.
Cancellations between A and B parts weaken angular dependence Background will change a bit the main behaviour.

Spectacular difference:
In үp first loop contains $\mathrm{K}^{\star+} \sum 0$ and $\mathrm{K}^{\star+} \Lambda \rightarrow$ interfere destructively.

In yn first loop only contains $\mathrm{K}^{\star+} \sum^{-}$ and there is no interference \rightarrow
This is the effect found by
Doring and Nakayama, PLB 2010 In $ү p \rightarrow \eta p$ and $\eta n \rightarrow \eta n$ to interprete second peak in $\mathrm{\gamma n} \rightarrow \eta n$
FIG. 4: Cross section for the $\gamma p \rightarrow K^{0} \Sigma^{+}$(black line) and $\gamma n \rightarrow K^{0} \Sigma^{0}$ reactions, including only an intermediate $K^{*+} \Sigma$ channel before the transition to the final $K^{0} \Sigma$ state.

But we have a second loop for VB $-\rightarrow$ PB transition \rightarrow extra interference

Fine tuning to experiment changing a bit the subtraction constants

With the new parameters we solve again the BS equation and the resonance moves from $\mathrm{M}_{\mathrm{R}}=1972 \mathrm{MeV}$, $\Gamma=64 \mathrm{MeV} \rightarrow \mathrm{M}_{\mathrm{R}}=2035 \mathrm{MeV}$, $\Gamma=125 \mathrm{MeV}$

Prediction for a resonance $1 / 2^{-}$, or $3 / 2^{-}$(degenerate in our model) Important because resonances around this energy have been removed in the latest edition of the PDG.

Conclusion: Physical explanation of basic features of the reaction Prediction of a new resonance around 2035 MeV
Importance of VB interaction and coupled channels
Prediction of spectacular differences in the shape of σ for $\gamma n \rightarrow K^{0} \Sigma^{0}$

Prediction of narrow N^{*} and Λ^{*} resonances with hidden charm above 4 GeV
J.J. Wu, R. Molina, E. O. and B. S. Zou, Phys Rev Lett 2010

$$
T=[1-V G]^{-1} V
$$

TABLE I: Coefficients $C_{a b}$ in Eq. (2) for $(I, S)=(1 / 2,0)$

	$\bar{D} \Sigma_{c}$	$\bar{D} \Lambda_{c}^{+}$	$\eta_{c} N$	πN	ηN	$\eta^{\prime} N$	$K \Sigma$	$K \Lambda$
$\bar{D} \Sigma_{c}$	-1	0	$-\sqrt{3 / 2}$	$-1 / 2$	$-1 / \sqrt{2}$	$1 / 2$	1	0
$\bar{D} \Lambda_{c}^{+}$		1	$\sqrt{3 / 2}$	$-3 / 2$	$1 / \sqrt{2}$	$-1 / 2$	0	1

TABLE II: Coefficients $C_{a b}$ in Eq. (2) for $(I, S)=(0,-1)$

	$\bar{D}_{s} \Lambda_{c}^{+}$	$\bar{D} \Xi_{c}$	$\bar{D} \Xi_{c}^{\prime}$	$\eta_{c} \Lambda$	$\pi \Sigma$	$\eta \Lambda$	$\eta^{\prime} \Lambda$	$\bar{K} N$	$\mathrm{~K} \Xi$
$\bar{D}_{s} \Lambda_{c}^{+}$	0	$-\sqrt{2}$	0	1	0	$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{2}{3}}$	$-\sqrt{3}$	0
$\bar{D} \Xi_{c}$		-1	0	$\sqrt{\frac{1}{2}}$	$-\frac{3}{2}$	$\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{12}}$	0	$\sqrt{\frac{3}{2}}$
$\bar{D} \Xi_{c}^{\prime}$			-1	$-\sqrt{\frac{3}{2}}$	$\sqrt{\frac{3}{4}}$	$-\sqrt{\frac{1}{2}}$	$\frac{1}{2}$	0	$\sqrt{\frac{1}{2}}$
$\eta_{c} \Lambda$				0	0	0	0	0	0

(I, S)	$z_{R}(\mathrm{MeV})$	g_{a}		
$(1 / 2,0)$		$\bar{D} \Sigma_{c}$	$\bar{D} \Lambda_{c}^{+}$	
	4269	2.85	0	
$(0,-1)$		$\bar{D}_{s} \Lambda_{c}^{+}$	$\bar{D} \Xi_{c}$	$\bar{D} \Xi_{c}^{\prime}$
	4213	1.37	3.25	0
	4403	0	0	2.64

TABLE III: Pole positions z_{R} and coupling constants g_{a} for the states from $P B \rightarrow P B$.

(I, S)	$z_{R}(\mathrm{MeV})$	g_{a}		
$(1 / 2,0)$		$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}^{+}$	
	4418	2.75	0	
$(0,-1)$		$\bar{D}_{s}^{*} \Lambda_{c}^{+}$	$\bar{D}^{*} \Xi_{c}$	$\bar{D}^{*} \Xi_{c}^{\prime}$
	4370	1.23	3.14	0
	4550	0	0	2.53

TABLE IV: Pole position and coupling constants for the bound states from $V B \rightarrow V B$.

(I, S)	M	Γ	Γ_{i}						(I, S)	M	Γ	Γ_{i}					
(1/2, 0)			πN	ηN	$\eta^{\prime} N$	K		$\eta_{c} N$	$(1 / 2,0)$			ρN	ωN	$K^{*} \Sigma$			$J / \psi N$
	4261	56.9	3.8	8.1	3.9	17.0		23.4		4412	47.3	3.2	10.4	13.7			19.2
$(0,-1)$			KN	$\pi \Sigma$	$\eta \Lambda$	$\eta^{\prime} \Lambda$	K	$\eta_{c} \Lambda$	$(0,-1)$			$\bar{K}^{*} N$	$\rho \Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^{*} \Xi$	$J / \psi \Lambda$
	4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
	4394	43.3	0	10.6	7.1	3.3	5.8	16.3		4544	36.6	0	8.8	9.1	0	5.0	13.8

Prediction of super-heavy N^{*} and Λ^{*} resonances with hidden

beauty

J. J. Wu, L. Zhao and B.S. Zou, Phys Lett B 2012

Pole positions z_{R} and coupling constants g_{a} for the states in (I, S $)=(1 / 2,0)$ sector

$z_{R}(\mathrm{MeV})$	g_{α}	
	$B \Sigma_{b}$	$B \Lambda_{b}$
11052	2.05	0
	$B^{*} \Sigma_{b}$	$B^{*} \Lambda_{b}$
11100	2.02	0

Pole positions z_{R} and coupling constants g_{a} for the states in $(1, S)=(0,-1)$ sector

$z_{R}(\mathrm{MeV})$	g_{α}		
	$B_{s} \Lambda_{b}$	$B \Xi_{b}$	$B \Xi_{b}^{\prime}$
$11021-0.59 i$	$0.14-0.11 i$	$2.27+0.004 i$	0
11191	0	0	1.92
$11069-0.59 i$	$0.14-0.12 i$	$2.24+0.005 i$	0
11238	$B_{s}^{*} \Lambda_{b}$	$B^{*} \Xi_{b}$	$B^{*} \Xi_{b}^{\prime}$
	0	0	1.89

The search for molecules in the charm and beauty sectors has experienced a recent boom.

Nieves, Hidalgo, Pavon, Guo, Garcia, Salcedo, Romanets, Tolos, Ramos implementing heavy quark spin symmetry (HQSS)
S. L. Zhu with dynamics of meson exchange

Fernandez -Carames et al, Gutsche et al, Ding et al, Bondar et al., Cleven et al., Li et al, Guo, Hanhart, Meissner, Sun, Liu, Zhu, Wang, Zhao, Dong, Zhang

Xiao, Nieves, Ozpineci, E. O. local hidden gauge (exchange of vector mesons) with HQSS.

Heavy quark spin symmetry (HQSS) and the local hidden gauge approach (LHGA):

1) Dominant term of LHGA comes from exchange of light vector mesons
\rightarrow The heavy quarks are spectators \rightarrow interaction is independent of spin and flavour of heavy quarks (HQSS)
\rightarrow The LHGA automatically implements HQSS
2) Take $\mathrm{I}=1$ in meson-meson as in figure: the light exchange involves u ubar from upper vertex and d dbar from lower vertex \rightarrow OZI forbidden:
ρ and ω exchange cancel.
But so does pseudoscalar exchange if masses of nonet are taken equal.
I=1 becomes subdominant

Conclusions

Chiral dynamics or its extension with the LHGA is a good tool to deal with hadron interaction.

Its combination with nonperturbative unitary techniques allows to study the interaction of hadrons. Poles in amplitudes correspond to dynamically generated resonances. Many known resonances can be described in this way.

The interaction of vector mesons with other mesons or baryons plays an important role in many hadronic reactions.

We analyzed a recent BES reaction on $\mathrm{J} / \psi \rightarrow \eta \mathrm{K}^{*} \mathrm{~K}^{*}$ bar and interpreted it as showing evidence for a new h_{1} state around 1830 MeV predicted from the VV interaction.

The dynamics of vector baryon interaction allowed us to interprete the experimental results of the $\gamma p \rightarrow K^{0} \Sigma^{+}$reaction and make interesting and unexpected predictions for $\mathrm{Yn} \rightarrow \mathrm{K}^{0} \Sigma^{0}$.

Plus the prediction of a N^{*} 1/2- , 3/2-resonance around 2035 MeV .
Extension to the heavy quark sector is proving fruitful. More data beyond spectra needed.

