Life on Earth - an accident?
 - chiral symmetry and the anthropic principle -
 Ulf-G. Meißner, Univ. Bonn \& FZ Jülich

$$
\text { 家梌 } \left\lvert\, \begin{aligned}
& \text { Bundesministerium } \\
& \text { für Bildung } \\
& \text { und Forschung }
\end{aligned}\right.
$$

CONTENTS

- Introduction: Definition of the problem
- The nuclear force at varying quark mass
- Constraints from Big Bang Nucleosynthesis
- The fate of carbon-based life as a function of fundamental parameters
- Summary \& outlook

Definition of the problem

ELEMENT GENERATION

- Elements are generated in the Big Bang \& in stars through the fusion of protons \& nuclei [pp chain or CNO-cycle]
- All is simple until ${ }^{4} \mathrm{He}$
- Only elements up to ${ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}$ are produced in the Big Bang [BBNucleosynthesis]
- Life-essential elements like ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ are generated in hot, old stars (triple-alpha reaction, see later)
- Note also that nuclei make up the visible matter in the Universe

THE TRIPLE-ALPHA PROCESS \rightarrow MOVIE

- the ${ }^{8} \mathrm{Be}$ nucleus is instable, long lifetime $\rightarrow 3$ alphas must meet
- the Hoyle state sits just above the continuum threshold \rightarrow most of the excited carbon nuclei decay (about 4 out of 10000 decays produce stable carbon)
- carbon is further turned into oxygen but w/o a resonant condition

$$
\Rightarrow \text { a triple wonder }
$$

EMERGENCE of STRUCTURE in QCD

- The strong interactions are described by QCD:

$$
\mathcal{L}=-\frac{1}{4 g^{2}} G_{\mu \nu} G^{\mu \nu}+\sum_{f=u, d, s, c, b, t} \bar{q}_{f}\left(i \gamma_{\mu} D^{\mu}-m_{f}\right) q_{f}
$$

- up and down quarks are very light, a few MeV
- Quarks and gluons are confined within hadrons
- Protons and neutrons form atomic nuclei
\Rightarrow This requires the inclusion of electromagnetism described by QED with $\alpha_{\mathrm{EM}} \simeq 1 / 137$

So how sensitive are these strongly interacting composites to variations of the fundamental parameters of QCD+QED?
or: how accidental is life on Earth?

Quark mass dependence of the nuclear forces

Berengut, Epelbaum, Flambaum, Hanhart, UGM, Nebreda, Pelaez, Phys. Rev. D 87 (2013) 085018

- Nuclear forces are given by chiral EFT based on Weinberg's power counting
\Rightarrow Pion-exchange contributions and short-distance multi-N operators
- graphical representation of the quark mass dependence of the LO potential

- always use the Gell-Mann-Oakes-Renner relation: $M_{\pi \pm}^{2} \sim\left(m_{u}+m_{d}\right)$

QUARK MASS DEPENDENCE of HADRON MASSES etc ${ }^{\circ}$

- Quark mass dependence of hadron properties:

$$
\frac{\delta O_{H}}{\delta m_{f}} \equiv K_{H}^{f} \frac{O_{H}}{m_{f}}, \quad f=u, d, s
$$

- Pion and nucleon properties from lattice QCD combined with CHPT
- Contact interactions modeled by heavy meson exchanges

Epelbaum, UGM, Glöckle, Elster (2002)

PION EXCHANGE CONTRIBUTIONS

- Work to NNLO, need quark mass dependence of $M_{\pi}, F_{\pi}, m_{N}, g_{A}$
\Rightarrow using lattice + CHPT gives: $K_{M_{\pi}}^{q}=0.494_{-0.013}^{+0.009}, \quad K_{F_{\pi}}^{q}=0.048 \pm 0.012$

$$
K_{m_{N}}^{q}=0.048_{-0.006}^{+0.002}
$$

- situation for g_{A} not quite clear

LQCD data show little quark mass dep. chiral expansion converges slowly two-loop representation might suffice to make contact with flat LQCD data Bernard, UGM (2006)
\rightarrow use a simplified two-loop representation
\rightarrow fixes quark mass dep. of $V_{1 \pi}+V_{2 \pi}$

QUARK MASS DEP. of the SHORT-DISTANCE TERMS

- Consider a typical OBEP with $M=\sigma, \rho, \omega, \delta, \eta$
- Quark mass dependence of the sigma and rho from unitarized CHPT

Hanhart, Pelaez, Rios (2008)
$\Rightarrow K_{M_{\sigma}}^{q}=0.081 \pm 0.007, \quad K_{M_{\rho}}^{q}=0.058 \pm 0.002$
\Rightarrow couplings appear quark mass independent (requires refinement in the future)

- assume a) that $\boldsymbol{K}_{\omega}^{q}=\boldsymbol{K}_{\rho}^{q}$ and b) neglect dep. of δ, η

RESULTS for the NN SYSTEM

- Putting pieces together for the two-nucleon system:

$$
K_{a, 1 S 0}^{q}=2.3_{-1.8}^{+1.9}, \quad K_{a, 3 S 1}^{q}=0.32_{-0.18}^{+0.17}, \quad K_{B(\text { deut })}^{q}=-0.86_{-0.50}^{+0.45}
$$

- Extends and improves earlier work based on EFTs and models

Beane, Savage (2003), Epelbaum, UGM, Glöckle (2003), Mondejar, Soto (2007), Flambaum, Wiringa (2007), Bedaque, Luu, Platter (2011) [BLP], . . .

Impact on BBN

Berengut, Epelbaum, Flambaum, Hanhart, UGM, Nebreda, Pelaez, Phys. Rev. D 87 (2013) 085018

QUARK MASS VARIATIONS of HEAVIER NUCLEI

- In BBN, we also need the variation of ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$. All other BEs are kept fixed.
- use the method of BLP:

$$
K_{A_{\mathrm{He}}}^{q}=K_{a, 1 \mathrm{So}}^{q} K_{A_{\mathrm{He}}}^{a, 1 \mathrm{So}}+K_{\mathrm{deut}}^{q} K_{A \mathrm{He}}^{\mathrm{dent}}, \quad A=3,4
$$

with

$$
\begin{aligned}
& K_{3 \mathrm{He}}^{a, 1 \mathrm{So}}=0.12 \pm 0.01, \quad K_{3_{\mathrm{He}}^{\text {deut }}}^{\text {den }}=1.41 \pm 0.01 \\
& K_{4}^{a, 1 \mathrm{Se} 0}=0.037 \pm 0.011, \quad K_{4 \mathrm{He}}^{\text {deut }}=0.74 \pm 0.22
\end{aligned}
$$

so that

$$
\Rightarrow \quad K_{3_{\mathrm{He}}}^{q}=-0.94 \pm 0.75, \quad K_{{ }_{4} \mathrm{He}}^{q}=-0.55 \pm 0.42
$$

- consistent w/ direct nuclear lattice simulation calc:

$$
\begin{array}{r}
\boldsymbol{K}_{\mathbf{3}_{\mathrm{He}}}^{\boldsymbol{q}}=-\mathbf{0 . 1 9} \pm \mathbf{0 . 2 5}, \quad \boldsymbol{K}_{4 \mathbf{H e}}^{\boldsymbol{q}}=-\mathbf{0 . 1 6} \pm \mathbf{0 . 2 6} \\
\text { EKLLM, PRL } 110(2013) 112502 ; \text { T. Lähde, priv. comm. }
\end{array}
$$

BBN RESPONSE MATRIX

- calculate BBN response matrix of primordial abundances Y_{a} at fixed baryon-to-photon ratio:

$$
\frac{\delta \ln Y_{a}}{\delta \ln m_{q}}=\sum_{X_{i}} \frac{\partial \ln Y_{a}}{\partial \ln X_{i}} K_{X_{i}}^{q}
$$

- use the updated Kawano code

X	d	${ }^{\mathbf{3}} \mathbf{H e}$	${ }^{4} \mathbf{H e}$	${ }^{\mathbf{6}} \mathbf{L i}$	${ }^{\mathbf{7}} \mathbf{L i}$
$\boldsymbol{a}_{\boldsymbol{s}}$	-0.39	0.17	0.01	-0.38	2.64
$\boldsymbol{B}_{\text {deut }}$	-2.91	-2.08	0.67	-6.57	9.44
$\boldsymbol{B}_{\text {trit }}$	-0.27	-2.36	0.01	-0.26	-3.84
$\boldsymbol{B}_{3_{\mathbf{H e}}}$	-2.38	3.85	0.01	-5.72	-8.27
$\boldsymbol{B}_{4} \mathbf{H e}$	-0.03	-0.84	0.00	-69.8	-57.4
$\boldsymbol{B}_{\mathbf{6}} \mathbf{L i}$	0.00	0.00	0.00	78.9	0.00
$\boldsymbol{B}_{7} \mathbf{L i}$	0.03	0.01	0.00	0.02	-25.1
$\boldsymbol{B}_{{ }_{7} \mathrm{Be}}$	0.00	0.00	0.00	0.00	99.1
$\boldsymbol{\tau}$	0.41	0.14	0.72	1.36	0.43

LIMITS for the QUARK MASS VARIATION

- Average of $[\mathrm{deut} / \mathrm{H}]$ and ${ }^{4} \mathrm{He}\left(\boldsymbol{Y}_{\boldsymbol{p}}\right)$:

$$
\frac{\delta m_{q}}{m_{q}}=0.02 \pm 0.04
$$

- in contrast to earlier studies, we provide reliable error estimates (EFT)
- but: BLP find a stronger constraint due to the neutron life time (affects $Y\left({ }^{4} \mathrm{He}\right)$)
- re-evaluate this under the model-independent assumption that all quark \& lepton masses vary with the Higgs VEV v
\Rightarrow results are dominated by the ${ }^{4} \mathrm{He}$ abundance:

$$
\left|\frac{\delta v}{v}\right|=\left|\frac{\delta m_{q}}{m_{q}}\right| \leq 0.9 \%
$$

The fate of carbon-based life as a function of the quark mass

Epelbaum, Krebs, Lähde, Lee, UGM
Phys. Rev. Lett. 110 (2013) 112502
Eur. Phys. J. A 48:82 (2013)

FINE-TUNING of FUNDAMENTAL PARAMETERS

THE TOOL: NUCLEAR LATTICE SIMULATIONS

- new method to tackle the nuclear many-body problem
- discretize space-time $V=L_{s} \times L_{s} \times L_{s} \times L_{t}$: nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
- typical lattice parameters

$$
\Lambda=\frac{\pi}{a} \simeq 300 \mathrm{MeV}[\mathrm{UV} \text { cutoff }]
$$

- strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry
J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302
- hybrid Monte Carlo \& transfer matrix (similar to LQCD)

CONFIGURATIONS

\Rightarrow all possible configurations are sampled
\Rightarrow clustering emerges naturally
\Rightarrow ab initio calculations possible

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A45 (2010) 335

- some groundstate energies and differences

$\mathrm{E}[\mathrm{MeV}]$	NLEFT	Exp.
${ }^{\mathbf{3}} \mathrm{He}-{ }^{\mathbf{3}} \mathrm{H}$	$0.78(5)$	0.76
${ }^{4} \mathrm{He}$	$-28.3(6)$	-28.3
${ }^{8} \mathrm{Be}$	$-55(2)$	-56.5
${ }^{12} \mathrm{C}$	$-92(3)$	-92.2
${ }^{16} \mathrm{O}$	$-131(1)$	-127.6
${ }^{20} \mathrm{Ne}$	$-166(1)$	-160.6
${ }^{24} \mathrm{Mg}$	$-198(2)$	-198.3
${ }^{28} \mathrm{Si}$	$-234(3)$	-236.5

- promising results
- excited states more difficult
\Rightarrow new projection MC method

The SPECTRUM of CARBON-12

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501
Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 109 (2012) 252501

- After $8 \cdot 10^{6}$ hrs JUGENE/JUQUEEN (and "some" human work)

FINE-TUNING: MONTE-CARLO ANALYSIS

- consider first QCD only \rightarrow calculate $\partial \Delta E / \partial M_{\pi}$
- relevant quantities (energy differences)

$$
\Delta E_{h} \equiv E_{12}^{*}-E_{8}-E_{4}, \quad \Delta E_{b} \equiv E_{8}-2 E_{4}
$$

- energy differences depend on parameters of QCD (LO analysis)

$$
\begin{gathered}
E_{i}=E_{i}\left(M_{\pi}^{\mathrm{OPE}}, m_{N}\left(M_{\pi}\right), g_{\pi N}\left(M_{\pi}\right), C_{0}\left(M_{\pi}\right), C_{I}\left(M_{\pi}\right)\right) \\
g_{\pi N} \equiv g_{A} /\left(2 F_{\pi}\right)
\end{gathered}
$$

- remember: $M_{\pi \pm}^{2} \sim\left(m_{u}+m_{d}\right)$
\Rightarrow quark mass dependence \equiv pion mass dependence

PION MASS VARIATIONS

- consider pion mass changes as small perturbations

$$
\begin{aligned}
\left.\frac{\partial E_{i}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}=\left.\frac{\partial E_{i}}{\partial M_{\pi}^{\mathrm{OPE}}}\right|_{M_{\pi}^{\text {phys }}} & +\left.x_{1} \frac{\partial E_{i}}{\partial m_{N}}\right|_{m_{N}^{\text {phys }}}+\left.x_{2} \frac{\partial E_{i}}{\partial g_{\pi N}}\right|_{g_{\pi N}^{\text {phs }}} \\
& +\left.x_{3} \frac{\partial E_{i}}{\partial C_{0}}\right|_{C_{0}^{\text {phys }}}+\left.x_{4} \frac{\partial E_{i}}{\partial C_{I}}\right|_{C_{I}^{\text {phys }}}
\end{aligned}
$$

with

$$
\left.x_{1} \equiv \frac{\partial m_{N}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}},\left.x_{2} \equiv \frac{\partial g_{\pi N}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}},\left.x_{3} \equiv \frac{\partial C_{0}}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{phys}}},\left.x_{4} \equiv \frac{\partial C_{I}}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{phys}}}
$$

\Rightarrow problem reduces to the calculation of the various derivatives using AFQMC and the determination of the x_{i}

- x_{1} and x_{2} can be obtained from LQCD plus CHPT
- x_{3} and x_{4} can be obtained from two-body scattering and its M_{π}-dependence

AFQMC RESUTS for the DERIVATIVES

- ${ }^{4} \mathrm{He}$
- ${ }^{12} \mathrm{C}\left(0_{1}^{+}, 0_{2}^{+}\right)$

$$
E\left(N_{t}\right)=E(\infty)+\text { const } \exp \left(-N_{t} / \tau\right)
$$

- x_{1} from the quark mass expansion of the nucleon mass:

$$
x_{1} \simeq 0.8 \pm 0.2
$$

- x_{2} from the quark mass expansion of the pion decay constant and the nucleon axial-vector constant:

$$
x_{2} \simeq-0.056 \ldots 0.008
$$

- x_{3} and x_{4} can be obtained from a two-nucleon scattering analysis
\Rightarrow while this can straightforwardly be computed, we prefer to use a representation that substitutes x_{3} and x_{4} by:

$$
\left.\frac{\partial a_{s}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{phys}}},\left.\quad \frac{\partial a_{t}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{phys}}}
$$

\Rightarrow we are ready to study the pertinent energy differences

RESULTS

- putting pieces together:

$$
\left.\frac{\partial \Delta E_{h}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}=-\left.0.455(35) \frac{\partial a_{s}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}-\left.0.744(24) \frac{\partial a_{t}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}+0.056(10)
$$

$$
\left.\frac{\partial \Delta E_{b}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}=-\left.0.117(34) \frac{\partial a_{s}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}-\left.0.189(24) \frac{\partial a_{t}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}+0.012(9)
$$

- x_{1} and x_{2} only affect the small constant terms
- also calculated the shifts of the individual energies (not shown here)
- $\left(\partial \Delta E_{h} / \partial M_{\pi}\right) /\left(\partial \Delta E_{b} / \partial M_{\pi}\right) \simeq 4$
$\Rightarrow \Delta E_{h}$ and $\Delta \boldsymbol{E}_{b}$ cannot be independently fine-tuned
- Within error bars, $\partial \Delta E_{h} / \partial M_{\pi} \& \partial \Delta E_{b} / \partial M_{\pi}$ appear unaffected by the choice of x_{1} and $x_{2} \rightarrow$ indication for α-clustering
- the triple alpha process is controlled by :

$$
\Delta E_{h+b} \equiv \Delta E_{h}+\Delta E_{b}=E_{12}^{\star}-3 E_{4}
$$

$$
\left.\frac{\partial \Delta E_{h+b}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}=-\left.0.571(14) \frac{\partial a_{s}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}-\left.0.934(11) \frac{\partial a_{t}^{-1}}{\partial M_{\pi}}\right|_{M_{\pi}^{\text {phys }}}+0.069(6)
$$

\Rightarrow quark mass dependence of the scattering lengths discussed earlier

CORRELATIONS

- vary the quark mass derivatives of $a_{s, t}^{-1}$ within $-1, \ldots,+1$:

- clear correlations: α-particle BE and the energies/energy differences
\Rightarrow anthropic or non-anthropic scenario depends on whether the ${ }^{4} \mathrm{He} \mathrm{BE}$ moves!

EARLIER STUDIES of the ANTHROPIC PRINCIPLE

- rate of the 3α-process: $r_{3 \alpha} \sim \Gamma_{\gamma} \exp \left(-\frac{\Delta E_{h+b}}{k T}\right)$

$$
\Delta E_{h+b}=E_{12}^{\star}-3 E_{\alpha}=379.47(18) \mathrm{keV}
$$

- how much can ΔE_{h+b} be changed so that there is still enough ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$?
$\Rightarrow\left|\Delta E_{h+b}\right| \lesssim 100 \mathrm{keV}$
Oberhummer et al., Science 289 (2000) 88
Csoto et al., Nucl. Phys. A 688 (2001) 560
Schlattl et al., Astrophys. Space Sci. 291 (2004) 27

[Livio et al., Nature 340 (1989) 281]

THE END-OF-THE-WORLD PLOT

- $\left|\delta\left(\Delta E_{h+b}\right)\right|<100 \mathrm{keV}$

$$
\rightarrow\left|\left|\left(0.571(14) \bar{A}_{s}+0.934(11) \bar{A}_{t}-0.069(6)\right) \frac{\delta m_{q}}{m_{q}}\right|<0.0015\right.
$$

SUMMARY \& OUTLOOK

- Chiral nuclear EFT: best approach to nuclear forces and few-body systems
- Study of the nuclear force as a function of the quark masses
\rightarrow pion-exchanges straightforward, contact interactions require modelling
- Impact on BBN: without neutron lifetime, $\delta m_{q} / m_{q}=(2 \pm 4) \%$
including the neutron lifetime (all masses $\sim v$): $\left|\delta m_{q} / m_{q}\right| \leq 0.9 \%$
- Nuclear lattice simulations as a new quantum many-body approach
\rightarrow allow to vary the parameters of QCD+QED
\rightarrow investigate changes in nuclear properties
- Fine-tuning of $m_{\text {quark }}$ and $\alpha_{\mathrm{EM}} \rightarrow$ viability of carbon-oxygen based life \Rightarrow changes in $m_{\text {quark }}$ of about $2-3 \%$ and in $\alpha_{\text {EM }}$ of about 2.5% are allowed

$$
\Rightarrow \text { conditions for life are fine-tuned }
$$

SPARES

A SHORT HISTORY of the HOYLE STATE

- Heavy element generation in massive stars: triple- α process

Bethe 1938, Öpik 1952, Salpeter 1952, Hoyle 1954, . . .

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightleftharpoons{ }^{8} \mathrm{Be} \\
& { }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightleftharpoons{ }^{12} \mathrm{C}^{*} \rightarrow{ }^{12} \mathrm{C}+\gamma \\
& { }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightleftharpoons{ }^{16} \mathrm{O}+\gamma
\end{aligned}
$$

- Hoyle's contribution: calculation of relative abundances of ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ and ${ }^{16} 0$ \Rightarrow need a resonance close to the ${ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}$ threshold at $\boldsymbol{E}_{\boldsymbol{R}}=\mathbf{0 . 3 5 \mathrm { MeV }}$ \Rightarrow this corresponds to a $J^{P}=0^{+}$excited state 7.7 MeV above the g.s.
- a corresponding state was experimentally confirmed at Caltech at $\boldsymbol{E}-\boldsymbol{E}$ (g.s.) $=7.653 \pm 0.008 \mathrm{MeV}$

Dunbar et al. 1953, Cook et al. 1957

- still on-going experimental activity, e.g. EM transitions at SDALINAC
M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501
- and how about theory ? \rightarrow this talk
- side remark: NOT driven by anthropic considerations
H. Kragh, Arch. Hist. Exact Sci. 64 (2010) 721

AN ENIGMA for NUCLEAR THEORY

- Ab initio calculation in the no-core shell model: $\approx 10^{7} \mathrm{CPU}$ hrs on JAGUAR
P. Navratil et al., Phys. Rev. Lett. 99 (2007) 042501; R. Roth et al., Phys. Rev. Lett. 107 (2011) 072501

\Rightarrow excellent description, but no trace of the Hoyle state

The anthropic principle

THE ANTHROPIC PRINCIPLE

- The anthropic principle:
"The observed values of all physical and cosmological quantities are not equally probable but they take on values restricted by the requirement that there exist sites where carbon-based life can evolve and by the requirements that the Universe be old enough for it to have already done so."

Carter 1974, Barrow \& Tippler 1988, ...

\Rightarrow can this be tested? / have physical consequences?

- Ex. 1: "Anthropic bound on the cosmological constant" Weinberg (1987) [541 cites]
- Ex. 2: "The anthropic string theory landscape" Susskind (2003) [713 cites]

A PRIME EXAMPLE for the ANTHROPIC PRINCIPLE

- Hoyle (1953):

Prediction of an excited level in carbon-12 to allow for a sufficient production of heavy elements (${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \ldots$) in stars

- was later heralded as a prime example for the AP:
"As far as we know, this is the only genuine anthropic principle prediction"
Carr \& Rees 1989
"In 1953 Hoyle made an anthropic prediction on an excited state - 'level of life’ for carbon production in stars"

Linde 2007
"A prototype example of this kind of anthropic reasoning was provided by Fred Hoyle's observation of the triple alpha process..."

Carter 2006

The RELEVANT QUESTION

Date：Sat， 25 Dec 2010 20：03：42－0600
From：Steven Weinberg 〈weinberg＠zippy．ph．utexas．edu〉
To：Ulf－G．Meissner＜meissner＠hiskp．uni－bonn．de〉
Subject：Re：Hoyle state in 12C

Dear Professor Meissner，
Thanks for the colorful graph．It makes a nice Christmas
card．But I have a detailed question．Suppose you calculate not only the energy of the Hoyle state in C12，but also of the ground states of He4 and Be8．How sensitive is the result that the energy of the Hoyle state is near the sum of the rest energies of He4 and Be8 to the parameters of the theory？I ask because I suspect that for a pretty broad range of parameters，the Hoyle state can be well represented as a nearly bound state of Be 8 and He 4 ．

All best，
Steve Weinberg

－How does the Hoyle state move relative to the $4 \mathrm{He}+8 \mathrm{Be}$ threshold， if we change the fundamental parameters of QCD＋QED？
－not possible in nature，but on a high－performance computer！

The NON-ANTHROPIC SCENARIO

- Weinberg's assumption: The Hoyle state stays close to the $4 \mathrm{He}+8 \mathrm{Be}$ threshold

The ANTHROPIC SCENARIO

-The AP strikes back: The Hoyle state moves away from the $4 \mathrm{He}+8 \mathrm{Be}$ threshold

