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Observation of a Near-Threshold Enhancement in the 𝛚𝜙 
Mass Spectrum from the Doubly OZI-Suppressed Decay J/
ψ→𝜸𝛚𝜙

near m2
!K!K" # 2 $GeV=c2%2 in the Dalitz plot, which

mainly comes from background due to J= ! !K&K.
To ensure that the structure at the !" mass threshold is

not due to background, we have studied potential back-
ground sources using both data and Monte Carlo (MC)
data. Non-! and non-" background are studied using !
and " sideband events. Figure 2(a) shows the
K!K"#!#"#0 invariant mass of events within the !
sideband (50 MeV=c2 < jm#!#"#0 "m!j< 80 MeV=c2,
jmK!K" "m"j< 15 MeV=c2), Fig. 2(b) shows the cor-
responding spectrum of events within the " side-
band (jm#!#"#0 "m!j< 30 MeV=c2, 15 MeV=c2 <
jmK!K" "m"j< 30 MeV=c2), and Fig. 2(c) shows the
events in the corner region, which is defined as
50 MeV=c2 < jm#!#"#0 "m!j< 80 MeV=c2, 15 MeV=
c2 < jmK!K" "m"j< 30 MeV=c2. The background is es-
timated by summing up the normalized backgrounds in
Figs. 2(a) and 2(b) and subtracting that in Fig. 2(c), and it is
shown as the shaded histogram in Fig. 2(d). No evidence of
an enhancement near !" threshold is observed from the
non-! and non-" background events.

Exclusive MC samples of J= decays which have simi-
lar final states are generated to check whether a peak near
!" mass threshold can be produced. The main back-
grounds come from J= ! !K&K, K& ! K#0. About
45! =" 17 J= ! !K&K, K& ! K#0 events remain in
the !" invariant mass. However, they peak at the high
mass region and do not produce a peak near the threshold.
We also checked possible backgrounds with a 60' 106

Monte Carlo simulation; J= ! anything sample, gener-
ated by the LUND-Charm model [12]. None of the MC
channels produces a peak near threshold in the !" invari-

ant mass spectrum. In addition, the data taken at the e!e"

center of mass energy of 3.07 GeV, with a luminosity of
2272:8( 36:4 nb"1, are used to check the continuum
contribution. No events are survived. As a check, the
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FIG. 2 (color online). The K!K"#!#"#0 invariant mass
distribution for (a) the events in the ! sideband; (b) the events
in the " sideband; (c) the events in the corner region; (d) for
events in the !" range, as described in the text. The shaded
histogram in (d) represents the background distribution obtained
from the sideband evaluation.
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FIG. 1 (color online). (a) The scatter plot of the mK!K" versus the #!#"#0 invariant mass. (b) The K!K" invariant mass
distribution. (c) The #!#"#0 invariant mass distribution; the open histogram is for candidate events withmK!K" being in the" range,
and the shaded histogram is for events with mK!K" being in the" sideband region. (d) The K!K"#!#"#0 invariant mass distribution
for the J= ! !!" candidate events. The dashed curve indicates the acceptance varying with the !" invariant mass. (e) Dalitz plot.
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M =1812+19-26±18 MeV
Γ=105±20±28 MeV

0++ Resonance
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Phys. Rev. D 74, 114025 (2006): enhancement found,  
strength much smaller that the data, 
f0(1710) ω𝜙 not known at that time

More explanations:

tetraquark: B. A. Li, Phys. Rev. D 74, 054017 (2006). 

hybrid:        K. -T. Chao, hep-ph/0602190. 

Glueball:        P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. 
G. Robertson, Eur. Phys. J. C 52, 363 (2007).
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Ref: BES Collaboration, Phys. Lett. B 
607 (2005) 243-253.
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Fig. 4. (a) and (b) show measured and fitted Dalitz plots for J/ψ → φπ+π− after
cutting K∗(890) events. (c) and (d) show mass projections; the upper histogram
shows the maximum likelihood fit and the lower one shows background; (e) shows the
f0 contribution from the fit (full histogram) and the lower curve the σ contribution,
(f) the f2(1270) contribution.
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Observation of a peak structure in the 𝝿+𝝿- Mass Spectrum was 

reported in J/ψ→𝝿+𝝿-𝜙 (also Doubly OZI-Suppressed) Decay

Sometime ago.

𝙛0(1790)
Peculiarity: Its decay to K anti-K is suppressed.
Thus, it can’t be the known 𝙛0(1710) ( known to decay with a
 large branching ratio to K anti-K, decay to pions is suppressed).

lunes 28 de octubre de 13



• The quantum numbers (Jπc=0++, I=0) of the states 
found in J/ψ→𝝿+𝝿-𝜙 and J/ψ→𝜸𝛚𝜙 are same.

• There masses are very similar.

• Is it the same state showing up in the two 
cases?

• The answer is a “No” (as also analyzed by BES). 
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• It seems from BES’ work that there are 3 scalar 
resonances:𝙛0(1710),  𝙛0(1790), 𝙛0(1800). 

• We show that there are only two states. That the enhancement 
seen in the J/ψ→𝜸𝛚𝜙 decay is the manifestation of the known 
𝙛0(1710).

• And the scalar resonance found in two pion spectrum is indeed a 
new state “𝙛0(1790)”,  distinct to the 𝙛0(1710). 

• We explain, why the decay of the latter one (𝙛0(1790)) to K-anti-K is 
suppressed.
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• Obtaining Potentials from lowest order Chiral Lagrangians.

• Solving coupled channel Bethe salpeter equations to get 
two-body t-matrices.

• Solving Faddeev equations                                for the πKK 
system

Supporting the existence of 𝙛0(1790) distinct to 𝙛0(1710)

T = T 1 + T 2 + T 3

T 1 =

+ ....++

+ + +

• We find a “π-π-𝙛0(980)” molecular interpretation for the 𝙛0(1790).

Formalism of the study in a nutshell: 
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The result obtained for the modulus squared πKK̄ amplitude projected on total isospin 1, with
theKK̄ subsystem on isospin zero, is shown in Fig. 1. As one can see, a peak around 1400 MeV with
85 MeV width appears when the invariant mass of the KK̄ subsystem in isospin zero is around
985 MeV. This means that the f0(980) state gets dynamically generated in the KK̄ subsystem
when the three-body state is formed. Instead of using the isospin base |I, I23〉 we can employ the
base characterized by the total isospin and the isospin of the (12) subsystem, i.e., πK subsystem,
I12. In this case we find that the peak at 1400 MeV shows up when the (12) subsystem is in
isospin I12 = 1/2 and its invariant mass is around 900 MeV, thus, close to the region in which the
κ(850) gets dynamically generated. Although the structure of the state at 1400 MeV is dominantly
πf0(980), since the squared amplitude for the case I = 1, I23 = 0 is two orders of magnitude bigger
than the one for I = 1, I12 = 1/2.

Figure 1: (Left) Squared amplitude for the πKK̄ channel for total isospin I = 1 with the KK̄ subsystem
in isospin zero. (Right) Contour plot as a function of the total energy,

√
s, and the invariant mass

√
s23

of the KK̄ subsystem, which is in isospin zero.

This state can be associated with the π(1300) listed in the PDB [17], whose mass is in the
range 1300 ± 100 MeV and the width found from the different experiments listed varies between
120 to 700 MeV [17]. Using these values like a reference, the peak position obtained here is in the
experimental upper limit for this state, while the width is close to the lower experimental value,
thus, our findings are compatible with the known data set. Surely, for a better comparison more
experiments which could help in determining the properties of this state with more precision are
needed. The decay modes seen for this resonance are ρπ and π(ππ)Swave. The channel π(ππ)Swave

is a three-body coupled channel of the πKK̄ and ππη channels considered here, however its mass
(around 410 MeV) is far away from the region in which the state is formed, thus, it should not be
essential in the generation of the π(1300). However, the inclusion of channels like π(ππ)Swave or
ρπ could help in increasing the width found for the state within our approach, since there is more
phase space for the π(1300) to decay.

Finally, we would like to mention that apart from the πKK̄, ππη systems, we have also studied

6

• We find a “π-π-𝙛0(980)” molecular interpretation for the 𝙛0(1790).

Formalism of the study in a nutshell: 
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Supporting the existence of 𝙛0(1790) distinct to 𝙛0(1710)

• Solve Faddeev equations again for  π π f0 (980) system.

Figure 4: (Upper panel) Squared amplitude for the f0(980)ππ channel for total isospin zero, thus, with
the ππ subsystem in isospin zero. (Lower panel) Contour plots as a function of the total energy of the
f0(980)ππ system,

√
s, and the invariant mass of the ππ subsystem,

√
s23 (Left side) and as a function

of the ππ and f0(980)π invariant masses,
√
s23 and

√
s12, respectively (Right side).

and use Eq. (15) and Eq. (16) as inputs for Eq. (6) to study the coupled channel system f0(980)ππ
and f0(980)KK̄ .

In Fig. 4 we show the result obtained for the f0(980)ππ amplitude with the ππ subsystem in
isospin zero. As one can see, a peak around 1773 MeV with 100 MeV width develops when the ππ
system is in isospin zero with an invariant mass around 450 MeV, while the invariant mass of the

9

the invariant mass of the ππ and KK̄ subsystems, around the region of the f0(980) and a0(980), we
do not find a clear structure which could be associated with higher scalar resonances, like f0(2000)
or f0(2100).

π π

f0(980)π(1300) π(1300){ {
{Mππ ∼ σ region

Figure 5: Internal structure of the f0(1790).

The scalar resonance found at 1773 MeV can be interpreted as a molecular state of π-π(1300),
with π(1300) being a πf0(980) molecular resonance (see Fig. 5). A state with this structure will
decay dominantly to ππ, ππππ and ππKK̄, as shown in Fig. 6, having larger phase space for the
ππ channel. If we try to associate this resonance with one of the scalar states listed in the PDB,
there is only one possibility: the f0(1710). But this state is known to decay dominantly to KK̄
and its decay to pions is suppressed [12]. This fact is in contradiction with the properties of the
scalar resonance found in the present work, which can not decay to KK̄ (as is clear from Fig. 6).
However, a new f0 with mass around 1790 MeV has been found in two pion spectrum by the BES
collaboration in Ref. [23] and it has also been indicated in an analysis [26] of the 4π data from
the BES collaboration [24]. One peculiarity of the f0(1790) observed in Refs. [23,24,26] is that its
decay to KK̄ is strongly suppressed as compare to its decay to ππ or ππππ, which is strikingly
similar to the characteristics of the f0 resonance found in our present work. Thus, we associate the
scalar resonance found at 1773 MeV with the f0(1790) found in Refs. [23, 24,26].

One comment is here in order. The resolution of Eq. (6) for the f0(980)ππ system implies
consideration of intermediate states in which two pions and a f0(980) are propagating. This does
not have to be necessarily true always, since we could have enough energy to excite the f0(980)
resonance and have then intermediate states of four particles, i.e., ππKK̄. However, the fact that a
signal is observed around 1773 MeV when we rely only on the propagation of the f0(980) resonance
and not of a K and a K̄ indicates that the consideration of ππKK̄ intermediate states contributes
mainly to the background, which basically could produce an increase in the width of the state.

11
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Supporting the existence of 𝙛0(1790) distinct to 𝙛0(1710)

f0(1790)

π(1300)

π

f0(980)

π

π

f0(1790)

π(1300)

π

f0(980)

π

π

π (K̄)

π (K)

π

Figure 6: Decay modes of the f0(1790) found in this work.

4 Conclusions

We have investigated the πKK̄ system and coupled channels in S-wave using an approach based on
solving the Faddeev equations within the use of unitary chiral dynamics to determine the two-body
input t-matrices. The study has revealed the formation of a state within isospin 1, Jπ = 0−, mass
around 1400 MeV and width of 85 MeV which can be associated with the π(1300) listed in the
Particle Data Book. The generation of this state configures the KK̄ subsystem as the f0(980)
resonance. Later on, considering the state found at 1400 MeV as an effective π-f0(980) system,
we have related the πKK̄ and πf0(980) amplitudes using the coupling of the f0(980) to the KK̄
system in isospin 0.

Further, we have used this amplitude to study the f0(980)ππ system and coupled channels
treating them like effective three-body systems. This system is found to generate dynamically a
0++ resonance with mass ∼ 1773 MeV and width ∼ 100 MeV. The formation of this state in
the f0(980)ππ system occurs when both f0(980)π subsystems are found to generate the π(1300).
Such a structure makes that this 0++ resonance decays to ππ, ππππ and ππKK̄, but not to KK̄.
These findings are not in agreement with the known scalar resonance in the 1700 MeV region,
i.e., f0(1710), but are strikingly similar to the features of the recently claimed f0(1790) in the
experimental data [23,24,26]. Thus, we relate our 0++ state with the f0(1790).

We have also studied the ηKK̄, ηππ systems in S-wave and no η resonances or bound states
are found in the energy region considered (1200-1900 MeV). It is worth mentioning here that we
have studied several three hadron systems consisting of a meson or a baryon and a KK̄ pair
(φKK̄ [35], NKK̄ [37, 46], KKK̄ [32] and now πKK̄) and in all these cases we found that the
f0(980) configuration of the KK̄ pair gives rise to a strong attraction in the three-body system
which leads to the dynamical generation of a state. However, not enough attraction gets developed
in the ηf0(980) configuration of the ηKK̄ system to form a bound state or resonance. One thing
to be noticed is that the interaction of the spin, isospin zero η meson with other hadrons is rather
weak, which could be an explanation for our findings.

12

• Decay mechanisms for 𝙛0(1790) to pions

• Decay to K anti-K suppressed 

• The resonance structure found in the 𝛚𝜙 mass spectrum cannot be 
related with 𝙛0(1790).
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The J/ψ→𝜸𝛚𝜙 decay: Flaw in the Bes’ interpretation?
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FIG. 1: Invariant mass spectra of a) K+K−, b) K0
SK0

S for J/ψ → γKK̄ events, where the shaded

histograms correspond to the estimated background contributions.

these hypotheses. Those events with a fit χ2 < 50, and with photon pair invariant mass

within 50 MeV/c2 of the π0 mass, are rejected. Finally, the two charged tracks and photon

in the event are 4-C kinematically fitted to obtain better mass resolution and to suppress

backgrounds further by the requirements χ2
γK+K− < 10 and χ2

γK+K− < χ2
γπ+π−.

For J/ψ → γK0
SK0

S, the K0
S mesons in the event are identified through the decay K0

S →

π+π−. The four charged tracks can be grouped into two pairs, each having two oppositely

charged tracks with an acceptable distance of closest approach. Signal events are required

to satisfy δ2
KS

< (20MeV/c2)2, where δ2
KS

= (Mπ+π−(1) − MKS)2 + (Mπ+π−(2) − MKS)2 and

Mπ+π− is calculated at the K0
S decay vertex. The main backgrounds from γK0

SK±π∓ and

γK0
SK0

Sπ
0 events are suppressed by requiring U < 0.10 GeV, P 2

tγ < 0.005 GeV2 and the 4-C

kinematic fit χ2
γ4π < 10.

Fig. 1 shows the K+K− and K0
SK0

S mass spectra for the selected events, together with

the corresponding background distributions. These two mass spectra agree closely below

6

f0(1710)

f0(
15

00
)

Ref: J. Z. Bai et al. [BES Collaboration], 
Phys. Rev. D 68, 052003 (2003)
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• Diagram (b) has been shown to be suppressed (see: Phys Rept. 174 (1989) 67, 
Eur. Phys. J. A44 (2010) 305, etc.).

• diagram (a)             SU(3) flavor singlet final state.

• Vector mesons final state interaction written in terms of a 
t-matrix obtained using effective field theory following Ref: 
L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009, where 𝙛0(1710) has been 
found as a dynamically generated resonance.

f0(1710) is generated and couples strongly to K∗K̄∗ and φω. In such a case, the mechanism
for final φω production proceeds with a primary production of γV V followed by rescattering
of these vectors to produce φω in the final state. As we shall see, the primary production
of φω is not allowed and only the V V rescattering leads to the φω in the final state. One
could reinterpret the doubly OZI suppressed mechanism for ωφ production in this way, the
first suppression applying to the production of all VV pairs without charm. This particular
feature actually works in favor of having a more neat resonant shape since the φω comes
only from rescattering of the vector mesons by means of an amplitude that incorporates
the f0(1710) resonance. Thus, a background from uncorrelated φω production is essentially
absent in the mechanism of production and the effects of the f0(1710) show up more neatly.
Since the resonance is below the φω threshold, it is a combination of the tail of this resonance
and the increasing phase space for φω production that produces the visible peak. An en-
hancement of the strength near threshold due to resonances below threshold is unavoidable
and this is a well known effect. Sometimes this shows up only as a deviation from phase
space, with no peak structure [16–18], but, depending on the strength of the background,
sometimes it can also show up as a clear peak. This was the case of the e+e− → J/ΨDD̄
reaction, where one peak close to the DD̄ threshold was observed and associated to a reso-
nance in the Belle collaboration work of Ref. [19]. However, in Ref. [20] it was shown that
a better fit to the data occurred due to the presence of a scalar hidden charm state below
the DD̄ threshold, X(3700), predicted in Ref. [21]. In the present case, the absence of a
significant background for φω production magnifies the resonance shape close to the φω
threshold, to the point that in Refs. [1, 2] a strong case was made about the discovery of a
new resonance. We shall argue here that this is not the case, showing that the peak comes
as an unavoidable consequence of the coupling of the φω to the f0(1710) resonance.

II. FORMALISM

In Ref. [22] the study of the radiative decay modes of the J/Ψ into a photon and one of
the tensor mesons f2(1270), f ′

2(1525), as well as the scalar ones f0(1370) and f0(1710), was
undertaken and a good agreement with ratios of branching ratios was obtained. We will
follow closely this formalism since for our present study we need both the radiative decay of
the J/Ψ into f0(1710), as well as the more concrete one of the J/Ψ → γφω.

As in Ref. [22], we assume, following the argumentation of Ref. [3], that the mechanism of
Fig. 1a dominates the reaction. Further support for this assumption was found in Ref. [22].

(a) (b)
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c̄
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c̄

FIG. 1. Two mechanisms of the J/Ψ radiative decays.
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 Formalism to study this process:
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• To get an SU(3) singlet in the final state we write:

• It is then easy to show that                                                    
Tr[M.M] gives an SU(3) flavor singlet.

• In effective field theory approach one writes the vector 
fields as

• and calculates Tr[V.V]

 Formalism:The next step is to see how the lower qq̄ components in the diagrams of Fig. 1 hadronize
into V ′V ′, as depicted in Fig. 2. For this we follow the quark line counting. The usual
SU(3) meson matrix in terms of qq̄ is given by

M =







uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄





 (10)

with the property that
M ·M = M × (uū+ dd̄+ ss̄). (11)

This symbolizes the hadronization process implicit in the diagram of Fig. 2. We can write
the meson matrix M in terms of the vector states

V =









1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ









(12)

such that V ·V will be equivalent to M ·M

V ·V ≡ M × (uū+ dd̄+ ss̄) (13)

and hence, the matrix elements of M prior to hadronization can be associated to V ·V,
which will give us the weight of the different vector-vector components after hadronization.
Hence, we associate

ss̄ → K∗−K∗+ + K̄∗0K∗0 + φφ, (14)

1√
2
(uū+ dd̄) →

1√
2
(ρ0ρ0 + ρ+ρ− + ρ−ρ+ + ωω +K∗+K∗− +K∗0K̄∗0). (15)

In order to project these combinations onto the physical states of ρρ, K∗K̄∗, ωω, φφ
with isospin 0, we recall the normalization and phases used in Ref. [16], ρ+ = −|1,+1〉,
K∗− = −|1/2,−1/2〉 and the unitary normalization (an extra factor 1√

2
in the case of

identical particles, or symmetrized ones, to ensure the resolution of identity in the sum
over intermediate states):

|ρρ, I = 0〉 = −
1√
6
|ρ0ρ0 + ρ+ρ− + ρ−ρ+〉

|K∗K̄∗, I = 0〉 = −
1

2
√
2
|K∗+K∗− +K∗−K∗+ +K∗0K̄∗0 + K̄∗0K∗0〉

|ωω, I = 0〉 =
1√
2
|ωω〉

|φφ, I = 0〉 =
1√
2
|φφ〉 (16)

Thus, the hadronized ss̄, 1√
2
(uū+ dd̄) components lead to the weights of Table 2.
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sū sd̄ ss̄





 (10)

with the property that
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5

Then, the cc̄ component after the γ radiation will decay into pairs of vectors, which inevitably
will interact among themselves. This is shown diagrammatically in Fig. 2. The following

J/ψ
V

V

+ + + · · ·
cc̄

FIG. 2. Schematic representation of J/Ψ decay into a photon and one dynamically generated
resonance.

step is to recall that the cc̄ object can be considered as an SU(3) singlet and then the pair
of original vectors in the primary step will couple to an SU(3) singlet. This can be easily
obtained from the trace of V · V

VVSU(3) singlet = Tr[V · V ], (1)

where V is the SU(3) matrix of the vector mesons

V =







1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ






. (2)

We, thus, find the vertex

VVSU(3) singlet = ρ0ρ0 +ρ+ρ− +ρ−ρ+ +ωω+K∗+K∗− +K∗0K̄∗0 +K∗−K∗+ +K̄∗0K∗0 +φφ.

(3)
One then projects this combination of VV states, which are the building blocks of the
resonance produced, into VV isospin states with unitary normalization (an extra factor
1/

√
2 for identical particles or symmetrized ones) and phase convention |ρ+〉 = −|1, +1〉,

|K∗−〉 = −|1/2, −1/2〉,

|ρρ〉I=0 = −
1√
6

|ρ0ρ0 + ρ+ρ− + ρ−ρ+〉, (4)

|K∗K̄∗〉I=0 = −
1

2
√

2
|K∗+K∗− + K∗0K̄∗0 + K∗−K∗+ + K̄∗0K∗0〉, (5)

|ωω〉I=0 =
1√
2

|ωω〉, (6)

|φφ〉I=0 =
1√
2

|φφ〉, (7)

and one gets the weights for primary VV production of the process J/Ψ → γVV with VV
pairs in I = 0:

wi =



























−
√

3
2 for ρρ

−
√

2 for K∗K̄∗

1√
2

for ωω
1√
2

for φφ.

. (8)

4
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√

3
2 for ρρ

−
√

2 for K∗K̄∗

1√
2

for ωω
1√
2

for φφ.

. (8)

4

It is interesting to note that there is no primary production of φω with this mechanism.
Production of φω will occur with the rescattering of the primary V V vectors as depicted in
Fig. 2, and the sum of these terms is readily done by means of

tJ/Ψ→γφω = A
4

∑

j=1

wjGjtj→φω, (9)

with A an unknown constant, wj are the weights of Eq. (8) for the different primary V V
channels, Gj the loop function for the intermediate V V states and tj→φω the transition
scattering matrix from the intermediate V V states to φω. We take the information for the
Gj and tij functions from Ref. [12].

The ti→j matrices can be traced back to the results of Ref. [12] by writing for each
resonance

ti→j =
gigj

s − M2
R + iMRΓR

(10)

where gi, gj are the couplings of the resonance to the i, j channels. We only need the f0(1710)
resonance here and the couplings are tabulated in Table I.

TABLE I. Couplings gk’s appearing in Eq. (10), with k one of the coupled channels: ρρ, K∗K̄∗,
ωω, φφ, and φω. The units of these gk’s are MeV.

R ρρ K∗K̄∗ ωω φφ φω

f0(1710) −1030 + i1086 7124 + i96 −1763 + i108 −2493 − i204 3010 − i210

With the amplitude of Eq. (9), which depends on the invariant mass of φω, we can
construct the φω mass distribution given by

dΓ

dMinv
=

1

(2π)3

1

4M2
J/Ψ

pγ q̄ω | tJ/Ψ→γφω |2, (11)

where pγ and q̄ω are the photon momentum in the J/Ψ rest frame and the ω momentum in
the φω rest frame, respectively

pγ =
λ1/2

(

M2
J/Ψ, 0, M2

inv

)

2MJ/Ψ
;

q̄ω =
λ1/2

(

M2
inv, m2

ω, m2
φ

)

2Minv
. (12)

On the other hand, if we are interested in the production of the f0(1710) resonance
regardless of its decay channel, the relevant mechanism is depicted diagrammatically in
Fig. 3 and we have

tJ/Ψ→γf0
= A

4
∑

j=1

wjGjgj (13)
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4

Aωj

weight of the overlap function between the hadron and quark states 
loop function

• isospin projections of different VV channels:

• Using these states, and relating Tr[M.M] with Tr[V.V], 
we can calculate the weight factor for the 
hadronization of the q anti-q to diffierent states.
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 Formalism:
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Vector-Vector meson Amplitude → Ref: Geng and Oset, Phys.Rev.D79, (2009) 074009. 

2

of their radiative decays. Section IV contains a brief summary
and our main conclusions.

II. FORMALISM

In this work, as in Refs. [35, 39], we use the Bethe-Salpeter
equation method to unitarize the amplitudes. In this approach,
the unitarized T amplitudes in coupled channels and s wave
can be written as

T = V + V GT = (1 − V G)−1V, (1)

where V stands for the tree-level transition amplitudes, andG
is a diagonal matrix with its element the vector meson–vector
meson loop function:

G = i

∫

d4q

(2π)4
1

q2 − M2
V 1

1

q2 − M2
V 2

, (2)

where MV 1 and MV 2 are the masses of the two vector-
mesons.
As explained in Ref. [35] and also shown in Fig. 1, four pos-

sible mechanisms contribute to the tree-level transition am-
plitudes V : (1) four-vector-contact term [Fig. 1(a)]; (2) t(u)-
channel vector meson exchange [Fig. 1(b)]; (3) s-channel vec-
tor meson exchange [Fig. 1(c)]; (4) box diagramwith interme-
diate pseudoscalars [Fig. 1(d)]. The corresponding diagram
to the one in Fig. 1(d) with crossed pions for ρρ scattering
was shown in Ref. [35] to provide much smaller contribution
than the direct box diagram [Fig. 1(d)] and, hence, we ignore
it here. Similarly in Ref. [35] the contribution of box dia-
grams with intermediate vector mesons involving anomalous
couplings was also found to be small and we shall omit them
in the present work as well.
In our approach, the first two diagrams play the most im-

portant role in the formation of resonances. The s-channel
vector meson exchange is mostly of p-wave nature. In the
case of the strangeness=1 channel, an s-wave contribution ap-
pears, which is proportional to the differences between the
initial (final) vector meson masses and is found to be numer-
ically negligible compared to the sum of the contact mech-
anism and the t(u)-channel vector meson exchange mecha-
nism. The box diagram depends somewhat on a form factor
that we shall discuss later on. The real part of the amplitude
is small compared to the sum of the four-vector-contact am-
plitude and the t(u) channel vector-exchange amplitude, but
the imaginary part is relatively large because there is a large
phase space for the decay into two pseudoscalars, as has been
explicitly shown in Ref. [35], where cancellations of the real
part with that from the box diagram involving anomalous cou-
plings was also found. Thus, we keep only its imaginary part.
We adopt the hidden-gauge formalism, consistent with chi-

ral symmetry, to describe the interactions between the vec-
tor mesons and those between the vectors and the pseu-
doscalars [36, 37]. The hidden-gauge Lagrangian is

L = −
1

4
〈V̄µν V̄ µν〉 +

1

2
M2

v 〈[Vµ − (i/g)Γµ]2〉, (3)

+

+
(c)

(a) (b)

(d)

+

FIG. 1: The mechanisms contributing to the tree-level vertex of
vector-vector scattering, which appears as V in the coupled channel
Bethe-Salpeter equation.

where

V̄µν = ∂µVν − ∂νVµ − ig[Vµ, Vν ],

Γµ =
1

2

{

u†[∂µ − i(vµ + aµ)]u + u[∂µ − i(vµ − aµ)]u†} ,

and 〈〉 stands for the trace in the SU(3) flavor space. Vµ rep-
resents the vector nonet:

Vµ =















ω+ρ0

√
2

ρ+ K∗+

ρ− ω−ρ0

√
2

K∗0

K∗− K̄∗0 φ















µ

, (4)

while u2 = U = exp
(

i
√

2Φ
f

)

with Φ the octet of the pseu-
doscalars

Φ =















η√
6

+ π0

√
2

π+ K+

π− η√
6
− π0

√
2

K0

K− K̄0 −
√

2
3η















. (5)

The value of the coupling constant g of the Lagrangian
[Eq. (3)] is

g =
MV

2f
, (6)

with MV the vector meson mass and f = 93 MeV the pion
decay constant.
The Lagrangian of Eq. (3) provides the following two inter-

actions:

LVVVV =
1

2
g2〈[Vµ, Vν ]V µV ν〉, (7)

LV V V = ig〈(∂µVν − ∂νVµ)V µV ν〉
= ig〈V µ∂νVµV ν − ∂νVµV µV ν〉
= ig〈(V µ∂νVµ − ∂νVµV µ)V ν)〉. (8)

Kernerl Bethe-Salpeter 
Equation

•f0(1710) found as dynamically 
generated state 

•Use the coupling of the channels 
to the corresponding pole in the 
complex plane)

It is interesting to note that there is no primary production of φω with this mechanism.
Production of φω will occur with the rescattering of the primary V V vectors as depicted in
Fig. 2, and the sum of these terms is readily done by means of

tJ/Ψ→γφω = A
4

∑

j=1

wjGjtj→φω, (9)

with A an unknown constant, wj are the weights of Eq. (8) for the different primary V V
channels, Gj the loop function for the intermediate V V states and tj→φω the transition
scattering matrix from the intermediate V V states to φω. We take the information for the
Gj and tij functions from Ref. [12].

The ti→j matrices can be traced back to the results of Ref. [12] by writing for each
resonance

ti→j =
gigj

s − M2
R + iMRΓR

(10)

where gi, gj are the couplings of the resonance to the i, j channels. We only need the f0(1710)
resonance here and the couplings are tabulated in Table I.

TABLE I. Couplings gk’s appearing in Eq. (10), with k one of the coupled channels: ρρ, K∗K̄∗,
ωω, φφ, and φω. The units of these gk’s are MeV.

R ρρ K∗K̄∗ ωω φφ φω

f0(1710) −1030 + i1086 7124 + i96 −1763 + i108 −2493 − i204 3010 − i210

With the amplitude of Eq. (9), which depends on the invariant mass of φω, we can
construct the φω mass distribution given by

dΓ

dMinv
=

1

(2π)3

1

4M2
J/Ψ

pγ q̄ω | tJ/Ψ→γφω |2, (11)

where pγ and q̄ω are the photon momentum in the J/Ψ rest frame and the ω momentum in
the φω rest frame, respectively

pγ =
λ1/2

(

M2
J/Ψ, 0, M2

inv

)

2MJ/Ψ
;

q̄ω =
λ1/2

(

M2
inv, m2

ω, m2
φ

)

2Minv
. (12)

On the other hand, if we are interested in the production of the f0(1710) resonance
regardless of its decay channel, the relevant mechanism is depicted diagrammatically in
Fig. 3 and we have

tJ/Ψ→γf0
= A

4
∑

j=1

wjGjgj (13)

5
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•With the J/Ψ→𝜸𝛚𝜙 amplitude we calculate the 𝛚𝜙 mass 
distribution as

where,

𝛚𝜙 invariant mass 

photon momentom in 
the  J/Ψ rest frame 

𝛚 momentom in the  
𝛚𝜙 rest frame 

lunes 28 de octubre de 13



III. RESULTS

As a first step we show the shape of the distribution dΓ/dMinv and compare it with the
updated data of the experiment [2].

In our approach, and assuming the dominance of the diagram represented by Fig. 1a,
there is no tree level contribution to the ωφ production. However, in order to account for
the strength of the distribution at large values of Minv, far away from the f0(1710) resonance,
we allow for a small background, which we take as a constant amplitude for simplicity, and
we replace in Eq. (9)

tJ/Ψ→γφω −→ tJ/Ψ→γφω + β, (21)

with β being a constant whose value is fixed by fitting the data around Minv # 3000 MeV
where the f0(1710) gives no relevant contribution.

In Fig. 4 we show the distribution obtained, fixing the total strength such as to reproduce
the peak of the experimental distribution of the number of φω events per bin. As we can
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bi

tra
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ts

M inv (GeV)

FIG. 4. The invariant mass distribution dΓ
dMinv

for the process J/Ψ → γφω from Eq. (11). The
data points, shown by filled circles, have been taken from Ref. [2]. The dotted and dashed lines

represent the background and the f0(1710) resonance contribution, respectively. The solid line
shows the coherent sum of the two.

see, there is a perfect agreement between our results and the experimental data. This might
be surprising at a first sight, but the tail of the resonant shape of the amplitude of Eq. (9),
together with the phase space factors in Eq. (11), essentially the factor q̄ω which vanishes
at the φω threshold, combine to give a peak close to the threshold. The resulting strength
and shape of the peak are linked to the dynamics of the process.

7

Results:

constant background

𝛚𝜙 mass distribution 

contribution from the f0(1710) resonance

coherent sum
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Results:

•We also calculated the Branching ratio of the   J/Ψ→𝜸𝛚𝜙 
amplitude 

from exptl data

Our result:

approach and it is this interaction what produces the f0(1710) resonance dynamically within
the unitary treatment of the local hidden gauge approach [12], and it couples most strongly
to K∗K̄∗. Hence, the coupling to KK̄ determined in Ref. [31] must be used with caution.
Reference [32] is from 1986 and we assume that it has been improved by the number quoted
in Ref. [8] from 2006. We thus take the rate of Ref. [8], however, with an error to allow
overlap with the numbers quoted in Refs. [31] and [32]. Then we obtain

ΓJ/Ψ→γf0(1710)

ΓJ/Ψ
= (1.4+0.8

−0.2) × 10−3. (19)

On the other hand, from Ref. [2] we have

B (J/Ψ → γR → γφω) =
(

2.00 ± 0.08+1.38
−1.00

)

× 10−4, (20)

from where estimating roughly the errors we find

B (J/Ψ → γR → γφω)

B (J/Ψ → γf0)
= 0.14+0.12

−0.07. (21)

III. RESULTS

First of all we show the shape of the distribution dΓ/dMinv and compare it with the
updated data of the experiment [2].

In our approach, and assuming the dominance of the diagram represented by Fig. 2a,
there is no tree level contribution to the φω production. However, in order to account for
the strength of the distribution at large values of Minv, far away from the f0(1710) resonance,
we allow for a small background, which we take as a constant amplitude for simplicity, and
we replace in Eq. (9)

tJ/Ψ→γφω −→ tJ/Ψ→γφω + β, (22)

with β being a constant (positive or negative) whose value is fixed by fitting the data around
Minv $ 3000 MeV where the f0(1710) gives no relevant contribution. The value of β turns
out to be of the same sign as Re{tJ/Ψ→γφω}.

In Fig. 5 we show the φω invariant mass distribution obtained, fixing the total strength
such as to reproduce the peak of the experimental data on the number of φω events per bin.
As we can see, there is a perfect agreement between our results and the experimental data.
This might be surprising at a first sight, but the tail of the resonant shape of the amplitude
of Eq. (9), together with the phase space factors in Eq. (12), essentially the factor q̄ω which
vanishes at the φω threshold, combine to give a peak close to the threshold. The resulting
shape of the peak is linked to the dynamics of the process.

It is interesting to separate the contribution of the resonance and the background. In
Fig. 5 we also show the contribution of the resonance alone, eliminating the background β
in Eq. (22). As we can see, the resonance term is dominant, although the interference with
the background raises the strength of the distribution. For comparison we also show in the
figure what one obtains from the background alone.

The agreement with the data is certainly a point to support the idea expressed in this
paper. This agreement is better than the one that would be obtained by the resonance
proposed in Ref. [2]. To show this, we simply substitute tJ/Ψ→γφω of Eq. (9) by

tJ/Ψ→γφω → tEmp =
A′

s − M2
R′ + iMR′ΓR′

+ β ′ (23)
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FIG. 6. The invariant mass distribution dΓ
dMinv

for the empirical amplitude of Eq. (23). The solid

line corresponds to the results found with a Breit-Wigner form with the central values of the
resonance parameters suggested in Ref. [2], i.e., mass of 1795 MeV and width of 95 MeV. The

dashed curve corresponds to assuming the same mass but the upper limit of the width, 183 MeV.

RΓ = 0.15+0.07
−0.04.

As we can see, the range of theoretical values fully overlaps with the experimental one of
Eq. (21). This agreement is totally tied to the dynamics of the V V interaction that we have
used, and, in as much as this dynamics has been tested in so many processes [29, 33–35], it
stands on solid ground. Then, the agreement on the absolute values of the rate of production
relative to ΓJ/Ψ → γf0(1710) is a strong point in favor of the idea exposed here that the peak
observed in Refs. [1] and [2] is due to the excitation of the f0(1710) resonance and its further
decay into φω.

We have stressed the relevance of not having the φω primary production to produce the
shape of the experimental distribution. In order to further understand this point we have
evaluated dΓ

dMinv
for K∗K̄∗ production where one has now a tree level contribution. The

second term of Eq. (9) would now be substituted by A(ωK∗K̄∗ +
∑4

j=1 ωjGjtj→K∗K̄∗) and q̄ω

in Eq. (12) by q̄K∗ . In this case we observe that the background of the tree level largely
dominates the distribution and only a very small peak at threshold appears that could be
missed in an experiment with low resolution.

10
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Summary:

• We argue that the cross section enhancements found in the data  
on the J/ψ→𝜸𝛚𝜙 and the J/ψ→π+π-𝜙 decay in the similar energy 
region are due to two distinct resonances.

• We find a scalar  resonance in the ππ f0(980) system with the 
properties very similar to the f0(1790) found in the π+π- spectrum 
in the J/ψ→π+π-𝜙 decay. 

• We find an explanation of the suppressed decay of f0(1790) to K-
anti-K channel.

• Further, we interpret the peak near 1800 MeV in the J/ψ→𝜸𝛚𝜙 
decay as the signature of the f0(1710) resonance which is 
dynamically generated within the effective field theory 
calculations of the VV systems.
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Summary:

• This explains why no peak is seen in the K anti-K mass 
distribution near 1800 MeV.

• We can reproduce the experimental data (mass distribution and 
branching ratio) obtained by the BES collaboration.

• Thus, there are two scalar resonances in 1700-1800 MeV region: 
f0(1710) and f0(1790).
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• Doubly OZI suppressed 
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• f0(1710) has been found to arise due to two vector meson dynamics. (Ref: L. S. 
Geng and E. Oset, Phys. Rev. D79 (2009) 074009).

• It was found to couple dominantly to the K* anti-K* channel.

• Coupled channels: ρρ,ωω,ΦΦ,K* anti-K*,ωΦ.

+ + + · · ·

V V

V V

= R

FIG. 2: Schematic representation of dynamically generated resonances from vector meson-vector meson

interaction.

J/ψ
V

V

+ + + · · ·
cc̄

FIG. 3: Schematic representation of J/ψ decay into a photon and one dynamically generated resonance.

where V is the SU(3) matrix of the vector mesons

V =











1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ











. (2)

We, thus, find the vertex

VVSU(3) singlet = ρ0ρ0+ρ+ρ−+ρ−ρ++ωω+K∗+K∗−+K∗0K̄∗0+K∗−K∗++K̄∗0K∗0+φφ.

(3)

One then projects this combination over the VV states which are the building blocks of the reso-

nance produced, with unitary normalization (an extra factor 1/
√
2 for identical particles or sym-

metrized ones) and phase convention |ρ+〉 = −|1,+1〉, |K∗−〉 = −|1/2,−1/2〉 of isospin,

|ρρ〉I=0 = −
1√
6
|ρ0ρ0 + ρ+ρ− + ρ−ρ+〉, (4)

|K∗K̄∗〉I=0 = −
1

2
√
2
|K∗+K∗− +K∗0K̄∗0 +K∗−K∗+ + K̄∗0K∗0〉, (5)

|ωω〉I=0 =
1√
2
|ωω〉, (6)

|φφ〉I=0 =
1√
2
|φφ〉, (7)

4

Formalism
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FIG. 5: (a) The invariant-mass distribution of K+K−π+π−π0; the dashed line is the mass distribution of the phase space MC

sample; the solid histogram shows the mass distribution without the requirement of M(γπ+π−π0)>1.0 GeV/c2. (b) Dalitz

plot of M2(γπ+π−π0) versus M2(γK+K−).

FIG. 6: The spectrum of the low-lying charmonium mesons. The red dashed line indicates the M = 2mD open-charmed

threshold. States with mass above this value can decay to final states containing D and D̄ mesons and are typically broad;

states below this threshold are relatively narrow. The magenta and red arrows indicate transitions used for the η c and hc

measurements reported here.
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