Interpreting the peak structures around 1800 MeV in the BES data on J/ $\psi \rightarrow \phi \pi^+ \pi^-, \rightarrow \gamma \omega \phi$

Kanchan Khemchandani Institute of Physics-Univ. of São Paulo, Brazil

with

A. M. Torres, M. Nielsen, F. S.Navarra, E.Oset, A. Hosaka, D.Jido

Based on: (1) Phys.Rev. D84 (2011) 074027 (2) Phys.Lett. B719 (2013) 388-393

The 7th International Symposium on Chiral Symmetry in Hadrons and Nuclei

Oct.27-30, 2013, Beihang university, China

lunes 28 de octubre de 13

Observation of a Near-Threshold Enhancement in the $\omega\phi$ Mass Spectrum from the Doubly OZI-Suppressed Decay J/ $\psi{\rightarrow}\gamma\omega\phi$

- $f_0(600)$
- $f_0(980)$
- $f_0(1370)$
- $f_0(1500)$
- $f_0(1710)$
- $f_0(2200)$
- $f_0(2330)$

- $f_0(600)$
- $f_0(980)$
- $f_0(1370)$
- $f_0(1500)$
- $f_0(1710)$??
- $f_0(2200)$
- $f_0(2330)$

- $f_0(600)$
- $f_0(980)$
- $f_0(1370)$
- $f_0(1500)$
- $f_0(1710)$??
- $f_0(2200)$
- $f_0(2330)$

Q. Zhao and B. -S. Zou, Phys. Rev. D **74**, 114025 (2006): enhancement found, strength much smaller that the data, $f_0(1710) \omega \phi$ not known at that time

- $f_0(600)$
- $f_0(980)$
- $f_0(1370)$
- $-f_0(1500)$
- $f_0(1710)$??
- $f_0(2200) \\- f_0(2330)$

More explanations:

tetraquark: B. A. Li, Phys. Rev. D 74, 054017 (2006). hybrid: K. -T. Chao, hep-ph/0602190. Glueball: P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. G. Robertson, Eur. Phys. J. C 52, 363 (2007).

Q. Zhao and B.-S. Zou, Phys. Rev. D 74, 114025 (2006): enhancement found, strength much smaller that the data, $f_0(1710) \omega \phi$ not known at that time

Sometime ago.

Observation of a peak structure in the $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ Mass Spectrum was

REPORTED IN J/ $\psi \rightarrow \pi^+ \pi^- \phi$ (also Doubly OZI-Suppressed) Decay

Peculiarity: Its decay to K anti-K is suppressed. Thus, it can't be the known $f_0(1710)$ (known to decay with a large branching ratio to K anti-K, decay to pions is suppressed). + The quantum numbers $(J^{\pi c}=0^{++}, I=0)$ of the states found in $J/\psi \rightarrow \pi^+\pi^-\phi$ and $J/\psi \rightarrow \gamma \omega \phi$ are same.

THERE MASSES ARE VERY SIMILAR.

IS IT THE SAME STATE SHOWING UP IN THE TWO CASES?

+ THE ANSWER IS A "NO" (AS ALSO ANALYZED BY BES).

- + It seems from BES' work that there are 3 scalar resonances: $f_0(1710)$, $f_0(1790)$, $f_0(1800)$.
- We show that there are only two states. That the enhancement seen in the $J/\psi \rightarrow \gamma \omega \phi$ decay is the manifestation of the known $f_0(1710)$.
- And the scalar resonance found in two pion spectrum is indeed a new state " $f_0(1790)$ ", distinct to the $f_0(1710)$.
- We explain, why the decay of the latter one ($f_0(1790)$) to K-anti-K is suppressed.

- + It seems from BES' work that there are 3 scalar resonances: $f_0(1710)$, $f_0(1790)$, $f_0(1800)$.
- + We show that there are only two states. That the enhancement seen in the $J/\psi \rightarrow \gamma \omega \phi$ decay is the manifestation of the known $f_0(1710)$.
- And the scalar resonance found in two pion spectrum is indeed a new state " $f_0(1790)$ ", distinct to the $f_0(1710)$.
- We explain, why the decay of the latter one ($f_0(1790)$) to K-anti-K is suppressed.

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- **+** Solving Faddeev equations $T = T^1 + T^2 + T^3$ for the $\pi \mathbf{K} \overline{\mathbf{K}}$ system

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- SOLVING FADDEEV EQUATIONS $T = T^1 + T^2 + T^3$ for the $\pi \kappa \kappa$ system

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- SOLVING FADDEEV EQUATIONS $T = T^1 + T^2 + T^3$ for the $\pi K \overline{K}$ system

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- SOLVING FADDEEV EQUATIONS $T = T^1 + T^2 + T^3$ for the $\pi \kappa \kappa$

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- SOLVING FADDEEV EQUATIONS $T = T^1 + T^2 + T^3$ for the $\pi \mathbf{K} \mathbf{K}$ system

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.

• We find a " π - π - f_0 (980)" molecular interpretation for the f_0 (1790).

- OBTAINING POTENTIALS FROM LOWEST ORDER CHIRAL LAGRANGIANS.
- SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
- SOLVING FADDEEV EQUATIONS $T = T^1 + T^2 + T^3$ for the $\pi \mathbf{K} \mathbf{K}$ system

790) distinct to $f_0(1710)$

R $\pi \pi f_0$ (980) SYSTEM.

- Decay mechanisms for $f_0(1790)$ to pions
- * Decay to K anti-K suppressed
- The resonance structure found in the $\omega \phi$ mass spectrum cannot be related with $f_0(1790)$.

The $J/\psi \rightarrow \gamma \omega \phi$ decay: Flaw in the Bes' interpretation?

Formalism to study this process:

Two mechanisms of the J/Ψ radiative decays.

- * Diagram (b) has been shown to be suppressed (see: Phys Rept. 174 (1989) 67, Eur. Phys. J.A44 (2010) 305, etc.).
- + DIAGRAM (A) SU(3) FLAVOR SINGLET FINAL STATE.

* VECTOR MESONS FINAL STATE INTERACTION WRITTEN IN TERMS OF A T-MATRIX OBTAINED USING EFFECTIVE FIELD THEORY FOLLOWING *Ref:* L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009, WHERE $f_0(1710)$ HAS BEEN FOUND AS A DYNAMICALLY GENERATED RESONANCE.

* To get an SU(3) singlet in the final state we write:

$$M = \begin{pmatrix} u\bar{u} \ u\bar{d} \ u\bar{s} \\ d\bar{u} \ d\bar{d} \ d\bar{s} \\ s\bar{u} \ s\bar{d} \ s\bar{s} \end{pmatrix}$$

• IT IS THEN EASY TO SHOW THAT $M \cdot M = M \times (u\bar{u} + d\bar{d} + s\bar{s})$ TR[M.M] GIVES AN SU(3) FLAVOR SINGLET.

$$\mathbf{V} = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$

 IN EFFECTIVE FIELD THEORY APPROACH ONE WRITES THE VECTOR FIELDS AS

+ AND CALCULATES TR[V.V]

 $VV_{SU(3) \text{ singlet}} = \rho^0 \rho^0 + \rho^+ \rho^- + \rho^- \rho^+ + \omega \omega + K^{*+} K^{*-} + K^{*0} \bar{K}^{*0} + K^{*-} K^{*+} + \bar{K}^{*0} K^{*0} + \phi \phi$

* isospin projections of different VV channels:

$$\begin{split} |\rho\rho\rangle_{\mathrm{I}=0} &= -\frac{1}{\sqrt{6}} |\rho^{0}\rho^{0} + \rho^{+}\rho^{-} + \rho^{-}\rho^{+}\rangle, \\ |K^{*}\bar{K}^{*}\rangle_{\mathrm{I}=0} &= -\frac{1}{2\sqrt{2}} |K^{*+}K^{*-} + K^{*0}\bar{K}^{*0} + K^{*-}K^{*+} + \bar{K}^{*0}K^{*0}\rangle \\ |\omega\omega\rangle_{\mathrm{I}=0} &= \frac{1}{\sqrt{2}} |\omega\omega\rangle, \\ |\phi\phi\rangle_{\mathrm{I}=0} &= \frac{1}{\sqrt{2}} |\phi\phi\rangle, \end{split}$$

* USING THESE STATES, AND RELATING TR[M.M] WITH TR[V.V], WE CAN CALCULATE THE WEIGHT FACTOR FOR THE HADRONIZATION OF THE Q ANTI-Q TO DIFFIERENT STATES.

lunes 28 de octubre de 13

$$t_{J/\Psi\to\gamma\phi\omega} = A\sum_{j=1}^{4} w_j G_j t_{j\to\phi\omega}$$

Vector-Vector meson Amplitude \rightarrow Ref: Geng and Oset, Phys.Rev.D79, (2009) 074009.

•With the $J/\Psi \rightarrow \gamma \omega \phi$ amplitude we calculate the $\omega \phi$ mass distribution as

$$\frac{d\Gamma}{dM_{\rm inv}} = \frac{1}{(2\pi)^3} \frac{1}{4M_{J/\Psi}^2} p_{\gamma} \bar{q}_{\omega} \mid t_{J/\Psi \to \gamma \phi \omega} \mid^2$$

$$\mathbf{\omega} \phi \text{ invariant mass}$$

where, $p_{\gamma} = \frac{\lambda^{1/2} \left(M_{J/\Psi}^2, 0, M_{inv}^2 \right)}{2M_{J/\Psi}} \quad \begin{array}{l} \text{photon momentom in} \\ \text{the } J/\Psi \text{ rest frame} \end{array}$ $\bar{q}_{\omega} = \frac{\lambda^{1/2} \left(M_{inv}^2, m_{\omega}^2, m_{\phi}^2 \right)}{2M_{inv}} \quad \textbf{\omega} \text{ momentom in the} \\ \mathbf{\omega} \boldsymbol{\phi} \text{ rest frame} \end{array}$

Results:

$\omega\phi$ mass distribution

Results:

•We also calculated the Branching ratio of the $J/\Psi \rightarrow \gamma \omega \phi$ amplitude

$$\frac{B\left(J/\Psi\to\gamma R\to\gamma\phi\omega\right)}{B\left(J/\Psi\to\gamma f_0\right)}=0.14^{+0.12}_{-0.07}.$$
 from exptl data

Our result: $0.15^{+0.07}_{-0.04}$

Summary:

- We argue that the cross section enhancements found in the data on the $J/\psi \rightarrow \gamma \omega \phi$ and the $J/\psi \rightarrow \pi^+\pi^-\phi$ decay in the similar energy region are due to two distinct resonances.
- We find a scalar resonance in the $\pi\pi$ f₀(980) system with the properties very similar to the f₀(1790) found in the $\pi^{+}\pi^{-}$ spectrum in the $J/\psi \rightarrow \pi^{+}\pi^{-}\phi$ decay.
- We find an explanation of the suppressed decay of $f_0(1790)$ to K-anti-K channel.
- Further, we interpret the peak near 1800 MeV in the $J/\psi \rightarrow \gamma \omega \phi$ decay as the signature of the f₀(1710) resonance which is dynamically generated within the effective field theory calculations of the VV systems.

Summary:

- This explains why no peak is seen in the K anti-K mass distribution near 1800 MeV.
- We can reproduce the experimental data (mass distribution and branching ratio) obtained by the BES collaboration.
- Thus, there are two scalar resonances in 1700-1800 MeV region: $f_0(1710)$ and $f_0(1790)$.

Doubly OZI suppressed

f₀(1710) has been found to arise due to two vector meson dynamics. (Ref: L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009).

- * It was found to couple dominantly to the K^* anti- K^* channel.
- * COUPLED CHANNELS: $00, \omega\omega, \Phi\Phi, K^*$ anti- $K^*, \omega\Phi$.

arXiv:1209.4813 [hep-ex]

M =1795±7+23-5 MeV Γ=95±10+78-34 MeV

HIGHER STATISTICS RESULTS FROM BESIII