Interpreting the peak structures around 1800 MeV in the BES data

on $\mathrm{J} / \Psi \rightarrow \phi \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}, \rightarrow \gamma \boldsymbol{\omega} \phi$
Kanchan Khemchandani Institute of Physics-Univ. of São Paulo, Brazil
with

A. M. Torres, M. Nielsen, F. S.Navarra, E.Oset, A. Hosaka, D.Jido

Based on: (1) Phys.Rev. D84 (2011) 074027
(2) Phys.Lett. $B 719$ (2013) 388-393

The 7th International Symposium on Chiral Symmetry in Hadrons and Nuclei
Oct.27-30, 20I3, Beihang university, China

OBSERVATION OF A NEAR-THRESHOLD ENHANCEMENT IN THE $\omega \boldsymbol{\phi}$ MASS SPECTRUM FROM THE DOUBLY OZI-SUPPRESSED DECAY J/ $\psi \rightarrow \gamma \omega \phi$

PHYSICAL REVIEW LETTERS PRL 96, 162002 (2006)

0^{++}Resonance
$M=1812+19-26 \pm 18 \mathrm{MeV}$
$\Gamma=105 \pm 20 \pm 28 \mathrm{MeV}$

Known spectrum of (isoscalar) scalars

$$
\begin{aligned}
& -f_{0}(600) \\
& -f_{0}(980) \\
& -f_{0}(1370) \\
& -f_{0}(1500) \\
& -f_{0}(1710) \\
& -f_{0}(2200) \\
& -\quad f_{0}(2330)
\end{aligned}
$$

Known spectrum of (isoscalar) scalars

$$
\begin{aligned}
& \text { - } f_{0}(600) \\
& \text { - } f_{0}(980) \\
& -\quad f_{0}(1370) \\
& -\quad f_{0}(1500) \\
& -\quad f_{0}(1710) \quad ? ? \\
& -\quad f_{0}(2200) \\
& -\quad f_{0}(2330)
\end{aligned}
$$

Known spectrum of (isoscalar) scalars

- $f_{0}(600)$
- $f_{0}(980)$
- $f_{0}(1370)$
- $f_{0}(1500)$
- $f_{0}(1710)$?? Q.Zhao and B.-S. Zou, Phys. Rev. D 74, 114025 (2006): enhancement found, strength much smaller that the data, $\mathrm{f}_{0}(1710) \omega \phi$ not known at that time
- $f_{0}(2330)$

Known spectrum of (isoscalar) scalars

- $f_{0}(600)$
- $f_{0}(980)$
- $f_{0}(1370)$
- $f_{0}(1500)$
- $f_{0}(1710)$??
- $f_{0}(2200)$
- $f_{0}(2330)$

More explanations:
tetraquark: B. A. Li, Phys. Rev. D 74, 054017 (2006).
hybrid: K. -T. Chao, hep-ph/0602190.
Glueball: P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. G. Robertson, Eur. Phys. J. C 52, 363 (2007).
Q. Zhao and B. -S. Zou, Phys. Rev. D 74, 114025 (2006): enhancement found, strength much smaller that the data, $f_{0}(1710) \omega \phi$ not known at that time

Sometime ago.

OBSERVATION OF A PEAK STRUCTURE IN THE $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$MASS SPECTRUM WAS

 REPORTED IN $J / \psi \rightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\phi} \boldsymbol{(A L S O}$ DOUBLY OZI-SUPPRESSED) DECAY
$f_{0}(1790)$
Peculiarity: Its decay to K anti- K is suppressed.
Thus, it can't be the known $\boldsymbol{f}_{0}(1710)$ (known to decay with a
large branching ratio to K anti- K , decay to pions is suppressed).

- The quantum numbers ($\mathbf{J}^{\pi c}=\mathbf{0}^{++}, \mathbf{I}=0$) OF The states FOUND IN $J / \psi \rightarrow \pi^{+} \pi^{-} \phi$ AND $J / \psi \rightarrow \gamma \omega \phi$ ARE SAME.
* THERE MASSES ARE VERY SIMILAR.
- IS IT THE SAME STATE SHOWING UP IN THE TWO CASES?

4 THE ANSWER IS A "NO" (AS ALSO ANALYZED BY BES).

- It seems from BES' work that there are 3 scalar resonances: $f_{0}(\mathbf{1 7 1 0}), f_{0}(\mathbf{1 7 9 0}), f_{0}(1800)$.
* We show that there are only two states. That the enhancement seen in the $J / \psi \rightarrow \gamma \omega \phi$ decay is the manifestation of the known $f_{0}(1710)$.
* And the scalar resonance found in two pion spectrum is indeed a new state " $f_{0}(\mathbf{1 7 9 0})$ ", distinct to the $f_{0}(1710)$.
* We explain, why the decay of the latter one $\left(f_{0}(1790)\right)$ to K -anti-K is suppressed.
- It seems from BES' work that there are 3 scalar resonances: $f_{0}(1710), f_{0}(1790), f_{0}(1800)$.
* We show that there are only two states. That the enhancement seen in the $J / \psi \rightarrow \gamma \omega \phi$ decay is the manifestation of the known $f_{0}(1710)$.
* And the scalar resonance found in two pion spectrum is indeed a new state " $f_{0}(1790)$ ", distinct to the $f_{0}(1710)$.
* We explain, why the decay of the latter one $\left(f_{0}(1790)\right)$ to K -anti-K is suppressed.

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.

- SOLVING FADdeev equations $T=T^{1}+T^{2}+T^{3}$ for the $\boldsymbol{\pi} \mathrm{K} \overline{\mathrm{K}}$ SYSTEM

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.

- Solving Faddeev equations $T=T^{1}+T^{2}+T^{3}$ for the $\pi \kappa \widehat{K}$ SYSTEM

$f_{0}(980)$

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.

- Solving Faddeev equations $T=T^{1}+T^{2}+T^{3}$ for the $\pi \kappa \widehat{K}$ SYSTEM

$\pi f_{0}(980)$

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
4 SOLVING FADDEEV EQUATIONS $T=T^{1}+T^{2}+T^{3}$ for the $\pi \widehat{K K}$ SYSTEM

$\pi f_{0}(980)$
$\pi f 0(980)$

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
4 SOLVING FADDEEV EQUATIONS $T=T^{1}+T^{2}+T^{3}$ for the $\pi \widehat{K K}$ SYSTEM

$\pi f_{0}(980)$

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.

- SOLVING FADDEEV EQUATIONS $T=T^{1}+T^{2}+T^{3}$ FOR THE π KK SYSTEM

$\pi f_{0}(980)$

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

4 WE FIND A " $\pi-\pi-f_{\mathrm{O}}(\mathbf{9 8 0}) "$ MOLECULAR INTERPRETATION FOR THE $f_{\mathrm{O}}(1790)$.

FORMALISM OF THE STUDY IN A NUTSHELL:

- Obtaining Potentials from lowest order Chiral Lagrangians.

4 SOLVING COUPLED CHANNEL BETHE SALPETER EQUATIONS TO GET TWO-BODY T-MATRICES.
4 SOLVING FADDEEV EQUATIONS $T=T^{1}+T^{2}+T^{3}$ for the $\pi \widehat{K K}$ SYSTEM

$\pi f_{0}(980)$

Supporting the existence of $f_{0}(\mathbf{1 7 9 0})$ distinct to $f_{0}(\mathbf{1 7 1 0})$

* SOLVE FADDEEV EQUATIONS AGAIN FOR $\pi \pi f_{0}$ (980) SYSTEM.

Supporting the existence of $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ distinct to $\boldsymbol{f}_{0}(\mathbf{1 7 1 0})$

+ Decay mechanisms for $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$ to pions
+ Decay to K anti-K suppressed
+ The resonance structure found in the $\boldsymbol{\omega} \phi$ mass spectrum cannot be related with $\boldsymbol{f}_{0}(\mathbf{1 7 9 0})$.

The $\mathrm{J} / \psi \rightarrow \gamma \omega \phi$ decay: Flaw in the Bes' interpretation?

Formalism to study this process:

Two mechanisms of the J / Ψ radiative decays.

+ Diagram (b) has been shown to be suppressed (see: Phys Rept. I 74 (I989) 67, Eur. Phys.J.A44 (2010) 305, etc.).
* DIAGRAM (A) SU(3) FLAVOR SINGLET FINAL STATE.
+ Vector mesons final state interaction written in terms of a t-matrix obtained using effective field theory following Ref: L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009, where $f_{0}(1710)$ has been FOUND AS A DYNAMICALLY GENERATED RESONANCE.

Formalism:

+ To get an $\operatorname{SU}(3)$ singlet in the final state we write:

$$
M=\left(\begin{array}{lll}
u \bar{u} & u \bar{d} & u \bar{s} \\
d \bar{u} & d \bar{d} & d \bar{s} \\
s \bar{u} & s \bar{d} & s \bar{s}
\end{array}\right)
$$

+ It is then easy to show that $M \cdot M=M \times(u \bar{u}+d \bar{d}+s \bar{s})$ Tr[M.M] Gives an SU(3) FLAVOR Singlet.

$$
\mathbf{V}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)
$$

+ IN EfFECTIVE FIELD theory Approach one writes the vector fields as
+ and calculates Tr[V.V]

$$
\mathrm{VV}_{\mathrm{SU}(3) \text { singlet }}=\rho^{0} \rho^{0}+\rho^{+} \rho^{-}+\rho^{-} \rho^{+}+\omega \omega+K^{*+} K^{*-}+K^{* 0} \bar{K}^{* 0}+K^{*-} K^{*+}+\bar{K}^{* 0} K^{* 0}+\phi \phi
$$

Formalism:

+ isospin projections of different VV channels:

$$
\begin{aligned}
|\rho \rho\rangle_{=0} & =-\frac{1}{\sqrt{6}}\left|\rho^{0} \rho^{0}+\rho^{+} \rho^{-}+\rho^{-} \rho^{+}\right\rangle, \\
\left|K^{*} \bar{K}^{\star}\right\rangle_{\lambda=0} & =-\frac{1}{2 \sqrt{2}}\left|K^{*+} K^{*-}+K^{\star 0} K^{\star 0}+K^{\star-} K^{*+}+\bar{K}^{* *} K^{* *}\right\rangle \\
|\omega \omega\rangle_{I=0} & =\frac{1}{\sqrt{2}}|\omega \omega\rangle, \\
|\phi \phi\rangle_{I=0} & =\frac{1}{\sqrt{2}}|\phi \phi\rangle,
\end{aligned}
$$

* USing THESE STATES, AND RELATING TR[M.M] WITH TR[V.V], WE CAN CALCULATE THE WEIGHT FACTOR FOR THE HADRONIZATION OF THE Q ANTI-Q TO DIFFIERENT STATES.

weight of the overlap function between the hadron and quark states

Formalism:

$$
t_{J / \Psi \rightarrow \gamma \phi \omega}=A \sum_{j=1}^{4} w_{j} G_{j} t_{j \rightarrow \phi \omega}
$$

Vector-Vector meson Amplitude \rightarrow Ref: Geng and Oset, Phys.Rev.D79, (2009) 074009.

Kernerl

Bethe-Salpeter

 Equation- $f_{0}(1710)$ found as dynamically generated state
- Use the coupling of the channels to the corresponding pole in the complex plane)

$$
t_{i \rightarrow j}=\frac{g_{i} g_{j}}{s-M_{R}^{2}+i M_{R} \Gamma_{R}}
$$

Formalism:

- With the $\mathrm{J} / \Psi \rightarrow \gamma \boldsymbol{\omega} \phi$ amplitude we calculate the $\boldsymbol{\omega} \phi$ mass distribution as
$\omega \phi$ invariant mass

$$
\frac{d \Gamma}{d M_{\mathrm{inv}}}=\frac{1}{(2 \pi)^{3}} \frac{1}{4 M_{J / \Psi}^{2}} p_{\gamma} \bar{q}_{\omega}\left|t_{J / \Psi \rightarrow \gamma \phi \omega}\right|^{2}
$$

where,

$$
\begin{aligned}
& p_{\gamma}=\frac{\lambda^{1 / 2}\left(M_{J / \Psi}^{2}, 0, M_{\text {inv }}^{2}\right)}{2 M_{J / \Psi}} \\
& \bar{q}_{\omega}=\frac{\lambda^{1 / 2}\left(M_{\mathrm{inv}}^{2}, m_{\omega}^{2}, m_{\phi}^{2}\right)}{2 M_{\mathrm{inv}}}
\end{aligned}
$$

photon momentom in the J / Ψ rest frame
$\boldsymbol{\omega}$ momentom in the
$\omega \phi$ rest frame

Results:

$\boldsymbol{\omega} \phi$ mass distribution

constant background
contribution from the $\mathrm{f}_{0}(\mathrm{I} \mid \mathrm{I})$) resonance

Results:

- We also calculated the Branching ratio of the $J / \Psi \rightarrow \gamma \omega \phi$ amplitude

$$
\frac{B(J / \Psi \rightarrow \gamma R \rightarrow \gamma \phi \omega)}{B\left(J / \Psi \rightarrow \gamma f_{0}\right)}=0.14_{-0.07}^{+0.12}
$$

Our result: $0.15_{-0.04}^{+0.07}$

Summary:

- We argue that the cross section enhancements found in the data on the $J / \psi \rightarrow \gamma \omega \phi$ and the $J / \psi \rightarrow \pi^{+} \pi-\phi$ decay in the similar energy region are due to two distinct resonances.
- We find a scalar resonance in the $\pi \pi f_{0}(980)$ system with the properties very similar to the $f_{0}(1790)$ found in the $\pi^{+} \pi$-spectrum in the $J / \psi \rightarrow \pi^{+} \pi^{-} \phi$ decay.
- We find an explanation of the suppressed decay of $f_{0}(1790)$ to K -anti-K channel.
- Further, we interpret the peak near 1800 MeV in the $J / \psi \rightarrow \gamma \omega \phi$ decay as the signature of the $f_{0}(1710)$ resonance which is dynamically generated within the effective field theory calculations of the VV systems.

Summary:

- This explains why no peak is seen in the K anti-K mass distribution near 1800 MeV .
- We can reproduce the experimental data (mass distribution and branching ratio) obtained by the BES collaboration.
- Thus, there are two scalar resonances in $1700-1800 \mathrm{MeV}$ region: $\mathrm{f}_{0}(1710)$ and $\mathrm{f}_{0}(1790)$.

* Doubly OZI suppressed

Formalism

+ $\mathrm{f}_{\mathrm{O}}(\mathrm{I} 710)$ has been found to arise due to two vector meson dynamics. (Ref: L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009).

* IT WAS FOUND TO COUPLE DOMINANTLY TO THE K* ANTI-K* CHANNEL.
* COUPLED CHANNELS: @@, $\omega \omega, \Phi \Phi, K^{*}$ anti-K*, $\omega \Phi$.

arXiv:1209.4813 [hep-ex]
$M=1795 \pm 7+23-5 \mathrm{MeV}$ $\Gamma=95 \pm 10+78-34 \mathrm{MeV}$

HIGHER STATISTICS RESULTS FROM BESIII

