Correcting Dr. Weinberg's prescriptions

- Renormalization and power counting of chiral nuclear forces

龙炳蔚 Bingwei Long Sichuan University

In collaboration with Chieh-Jen Yang Chiral 13, Beijing, 10/2013

What are we really doing?

Modify power counting of NN contact interactions, so as

(1) to satisfy renormalization group invariance;

(2) to better understand how much of nuclear physics is decided by short-range interactions as opposed to chiral symmetry. Model-independent descriptions of low-energy nuclear physics, based on chiral effective field theory $d + {}^{3}H \rightarrow {}^{4}He + n(14 \text{ MeV})$ $d + d \rightarrow {}^{3}He + n(2.5 \text{ MeV})$

2. Electro-weak probes $p + p \rightarrow d + e^+ + \nu_e$

3. Nuclear structure

Binding energies of light nuclei

Effective field theory

+

EFT = Effective Lagrangian

> . Low-energy Dofs . Symmetries

Power Counting

organization principle: *a priori* estimation of diagrams

Goal: expansion of amplitudes

 $\mathcal{M} = \sum_{n} \left(\frac{Q}{M_{hi}}\right)^{n} \mathcal{F}_{n} \left(\frac{Q}{M_{lo}}\right) \qquad \begin{array}{l} Q: \text{ generic external momenta,} \\ M_{hi} = \Lambda_{SB}, m_{\rho}, \dots \sim 1 \text{GeV} \\ M_{lo} = m_{\pi}, f_{\pi} \sim 100 \text{MeV} \end{array}$

Main benefit: reliable estimates of theo. err.

Dr. W's prescriptions

 Derivatives on couplings are always suppressed — naive dimensional analysis.

2. Nonperturbative iterations don't affect power counting.

Implemented by Epelbaum, et al (1999, 2003) and Entem et al (2002) with a small range of cutoffs

However, cutoff dependence of resummed amplitudes was not addressed in W counting

Strength of OPE provides an infrared scale

$$V_{1\pi} = \frac{g_A^2}{4f_\pi^2} \frac{\vec{q} \cdot \vec{\sigma}_1 \vec{q} \cdot \vec{\sigma}_2}{m_\pi^2 + q^2} \to \frac{1}{m_N} \frac{\lambda}{M_{NN} r^3} e^{-m_\pi r}$$

 $M_{NN} = 100 \sim 300 \text{MeV}$ varies for different partial waves

Naive dimensional analysis for estimating contact interactions is no longer reliable

$$\frac{4\pi}{m_N} \left(\frac{\tilde{C}_0}{M_0} \delta^{(3)}(\vec{x}) + \frac{\tilde{C}_2}{M_2^2} \nabla^2 \delta^{(3)}(\vec{x}) + \cdots \right)$$

Cutoff dependence of W counting

Nogga, Timmerman & van Kolck (2005)

E.g., 3Po

A singular attractive potential needs a counterterm $-4^$ nucleon operator with the same QM number as 3Po

A derivative coupling not suppressed!

Solid: Tlab = 10 MeV, dashed: 50 MeV

Very large cutoffs were used to illustrate the cutoff dependence, but we don't insist on using them in practical calculations once power counting is established.

Subleading orders in triplet channels

Renormalization of one insertion of two-pion exchange

BwL, van Kolck (2008) BwL, Yang (2011, 2012) Pavon Valderrama(2011, 2012)

for LO potential $\sim -1/r^3$,

$$\begin{split} \psi_k^{(0)}(r) &\sim \left(\frac{\lambda}{r}\right)^{\frac{1}{4}} \left[u_0(r/\lambda) + k^2 r^2 \sqrt{\frac{r}{\lambda}} u_1(r/\lambda) + \mathcal{O}(k^4) \right] \\ \lambda &= \frac{3g_A^2 m_N}{8\pi f_\pi^2} \qquad u_{1,2}(x) \sim \mathcal{O}(1) \\ V_{2\pi} &\sim \frac{1}{r^5} r \to 0 \\ T^{(2)} &= \langle \psi^{(0)} | V_{2\pi} | \psi^{(0)} \rangle \\ &\sim \int_{\sim 1/\Lambda} dr r^2 | \psi^{(0)}(r) |^2 \frac{1}{r^5} \sim \alpha_0(\Lambda) \Lambda^{5/2} + \beta_0(\Lambda) k^2 + \mathcal{O}(k^4 \Lambda^{-5/2}) \end{split}$$

Cutoff independence has also been checked numerically

Original W counting for (attractive) e.g., 3Po triplet channels

LO	OPE
NLO	C2 p^2
NNLO	C4 p^4

Modified PC for (attractive) triplet e.g., 3Po channels

LO	OPE
NLO	C2 p^2
NNLO	C4 p^4

Modified PC for (attractive) triplete.g., 3Pochannels

LO	OPE C2 p^2
NLO	C4 p^4
NNLO	

Fine tuning in 1SO

1So phase shifts: comparison of EFT and PWA

Epelbaum et al (1999)

LO pot. = OPE + Co

Large NLO correction suggests fine tuning of NLO counterterm --- C2 p^2

Tlab

Promoting C2?

LO pot. = OPE + Co + C2 p^2 does not work for renormalization

Introduce s-channel exchange by an auxiliary dibaryon field

Kaplan (1996), with modification by BwL (2013)

$$V^{(0)} = V_{Yukawa} + \frac{\sigma y^2}{E + \Delta} \longrightarrow T^{(0)}_{1S0} = T_{Yukawa} + \frac{\chi^2(k;k)}{\frac{E + \Delta}{\sigma y^2} - I_k}$$

Summary

1. Weinberg's scheme for chiral nuclear forces needs modifications

2. Some of the NN contact operators need promotions
- In attractive triplet channels, due to renormalization
- In 1so, due to fine tuning of underlying theory

3. Any other constraints?