Updated study of meson-baryon dynamics with strangeness -1 in a chiral framework

Zhi-Hui Guo

Hebei Normal University

The Seventh International Symposium on Chiral Symmetry in Hadrons and Nuclei (Chiral13)

27-30 October, 2013, Beijing, China

- Background and motivation
- ② Theoretical formalism
- O Phenomenological discussions
- 4 Summary

Background and motivation

Interests in S-wave meson-baryon scattering with strangeness -1:

- $\Lambda(1405)$: a baryon resonance below $\overline{K}N$ threshold, two-pole structure,
- Status of experiments on the energy shift and width of the 1s kaonic hydrogen state: KEK, DEAR and SIDDHARTA

$$\begin{split} \Delta E - i \frac{\Gamma}{2} &= -2\alpha^3 \, \mu_r^2 \, \mathbf{a}_{K^- p} \\ &\left[1 + 2\alpha \, \mu_r \left(1 - \ln \alpha \right) \mathbf{a}_{K^- p} \right], \end{split}$$

$$\mu_r = m_p M_{K^-} / (M_{K^-} + m_p),$$

$$a_{K^-p} \text{ the scattering length}$$

Meissner, Raha, Rusetsky, '04EPJC]

- Controversial and active study for K-nuclear systems: KN scattering below threshold is crucial
- Provide important ingredients for strangeness photoproduction

Theoretical formalism:

Chiral Perturbation Theory plus unitarity

Zhi-Hui Guo (Hebei Normal University), Chiral13 Meson-baryon dynamics with s = -1 in a chiral framework

Baryon Chiral Perturbation Theory

$$\mathcal{L}_{1} = \langle i\bar{B}(\gamma^{\mu}[D_{\mu}, B]\rangle - m_{0}\langle\bar{B}B\rangle \\ + \frac{D}{2}\langle\bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\}\rangle + \frac{F}{2}\langle\bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B]\rangle,$$

$$\mathcal{L}_{2} = b_{0}\langle\bar{B}B\rangle\langle\chi_{+}\rangle + b_{D}\langle\bar{B}\{\chi_{+}, B\}\rangle + b_{F}\langle\bar{B}[\chi_{+}, B] \\ + b_{1}\langle\bar{B}[u_{\mu}, [u^{\mu}, B]]\rangle\rangle + b_{2}\langle\bar{B}\{u_{\mu}, \{u^{\mu}, B\}\}\rangle \\ + b_{3}\langle\bar{B}\{u_{\mu}, [u^{\mu}, B]\}\rangle + b_{4}\langle\bar{B}B\rangle\langle u_{\mu}u^{\mu}\rangle + \cdots$$

with $U = u^2 = e^{i\Phi/f}$, $u_\mu = iu^{\dagger}(\partial_\mu U)u^{\dagger}$

$$B = \begin{pmatrix} \frac{2_0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -\frac{\Sigma_0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}, \quad \Phi = \begin{pmatrix} \frac{\pi_0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi_0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & K^0 \\ K^- & \overline{K^0} & -\frac{2\eta_8}{\sqrt{6}} \end{pmatrix}$$

Relevant Feynman diagrams

Figure: Meson-baryon scattering amplitudes (V_{ij}) up to next-to-leading order: vertexes in (a)(b)(c) are from \mathcal{L}_1 and vertexes in (d) are from \mathcal{L}_2 .

Partial wave projection

We focus on the *S*-wave meson-baryon scattering:

$$\mathcal{T}_{ij}(W=\sqrt{s})=rac{1}{4\pi}\int d\Omega \ V_{ij}(W,\Omega,\sigma_3,\sigma_3)\,.$$

 $\begin{array}{l} V_{ij} \text{ stand for the meson-baryon } (\phi B)_i \rightarrow (\phi B)_j \text{ scattering amplitudes,} \\ \text{with the labels } i,j=1,2,3,\ldots,10 \text{ corresponding to the ten different} \\ \text{channels: } \pi^0 \Lambda \ (1), \ \pi^0 \Sigma^0 \ (2), \ \pi^- \Sigma^+ \ (3), \ \pi^+ \Sigma^- \ (4), \ K^- p \ (5), \ \bar{K}^0 n \ (6), \\ \eta \Lambda \ (7), \ \eta \Sigma^0 \ (8), \ K^0 \Xi^0 \ (9) \text{ and } K^+ \Xi^- \ (10). \end{array}$

Unitarity in partial wave amplitudes

- Crucial for $\bar{K}N$ scattering: breakdown of the perturbative treatment of chiral amplitudes, e.g. appearance of $\Lambda(1405)$
- Starting point: unitarity condition of a partial wave

$$\operatorname{Im} T_{ij}(s) = \sum\nolimits_k T_{ik} \rho_k \, T_{kj}^* \Rightarrow \operatorname{Im} T_{ij}^{-1}(s) = -\rho_i(s) \delta_{ij} \,, \quad s > s_{\mathrm{th}}$$

with
$$\rho_i = \frac{q_i}{8\pi\sqrt{s}} = \frac{\sqrt{[s - (m+M)^2][s - (m-M)^2]}}{16\pi s}$$

• Dispersion relation for T^{-1}

g(s) function corresponds to two-point loop function and dimensional regularization leads to

$$16\pi^2 g(s) = a_{SL}(\mu) + \log \frac{m_b^2}{\mu^2} - x_+ \log \frac{x_+ - 1}{x_+} - x_- \log \frac{x_- - 1}{x_-},$$

$$x_{\pm} = \frac{s + m_a^2 - m_b^2}{2s} \pm \frac{1}{-2s} \sqrt{-4s(m_a^2 - i0^+) + (s + m_a^2 - m_b^2)^2},$$

and subtraction constants a_{SL} will be fitted to data.

• Unitarized partial wave amplitude

[Oller, Oset, PRD'99]

$$T(s) = \left[N^{-1}(s) + g(s)
ight]^{-1} = \left[I + N(s) \cdot g(s)
ight]^{-1} \cdot N(s)$$

Through the chiral expansion and matching with perturbative $\chi {\rm PT}$ amplitudes, one can obtain

$$N_{1} = T_{1}^{\chi PT}, \qquad N_{2} = T_{2}^{\chi PT}, N_{3} = T_{3}^{\chi PT} + T_{1}^{\chi PT} \cdot g(s) \cdot T_{1}^{\chi PT}, \qquad \cdots \cdots N = N_{1} + N_{2} + N_{3} + \cdots$$

Phenomenological discussions

Data included in our fits:

• Cross sections at low energy: $\mathcal{K}^- p \to \mathcal{K}^- p, \tilde{\mathcal{K}}^0 n, \pi^+ \Sigma^-, \pi^- \Sigma^+, \pi^0 \Sigma^0, \pi^0 \Lambda, \eta \Lambda$ $\sigma[(\phi B)_i \to (\phi B)_j] = \frac{1}{16\pi s} \frac{|\vec{p}_j|}{|\vec{p}_i|} |T_{(\phi B)_i \to (\phi B)_j}|^2.$

Ratios at threshold

$$\begin{split} \gamma &= \frac{\sigma(K^- p \to \pi^+ \Sigma^-)}{\sigma(K^- p \to \pi^- \Sigma^+)} , \quad R_c = \frac{\sigma(K^- p \to \text{charged particles})}{\sigma(K^- p \to \text{all})}, \\ R_n &= \frac{\sigma(K^- p \to \pi^0 \Lambda)}{\sigma(K^- p \to \text{all neutral states})} . \end{split}$$

- SIDDHARTA measurements on the width (Γ) and energy shift (ΔE) of kaonic hydrogen state
- $\pi\Sigma$ event distribution from the process $K^-p o \Sigma^+(1660)\pi^-$
- $K^- p \to \pi^0 \pi^0 \Sigma^0$: total cross section and $\pi^0 \Sigma^0$ event distribution
- $\pi\Lambda$ phase difference between *P* and *S*-wave at the $m_{\Xi^{-}}$: $\delta_{\pi\Lambda}$
- Next-to-leading order fits of $\sigma_{\pi N}, a_{0+}^+, m_N, m_{\Lambda}, m_{\Sigma}, m_{\Xi}$

Two sources of uncertainties are investigated carefully, which are overlooked in previous works:

- Employ a common decay constant f for π, K, η: Fit-I, [Kaiser,Siegel,Weise,'95],[Magas,Oset,Ramos,'05],[Oller,Meissner,'01]
 [Borasoy,Nissler,Weise,'05'06],[Garcia-Recio, et al.,'03] or distinguish the values of fπ, fK, fη: Fit-II
 [Nieves,Ruiz Arriola,'01],[Ikeda,Hyodo,Weise,'11'12],[Mai,Meissner,'13]
- ② Influence of different strategies to define the χ^2 in the fit: Standard definition for χ^2

$$\chi^2_{d.o.f} = \frac{1}{\sum_k n_k - n_p} \sum_{k=1}^L \chi^2_k ,$$

[Oller,Meissner,'01],[Jido,et al.,'03],[Oller,'06] Weight-averaged χ^2

$$\chi^{2}_{d.o.f} = \frac{\sum_{k} n_{k}}{L\left(\sum_{k} n_{k} - n_{p}\right)} \sum_{k=1}^{L} \frac{\chi^{2}_{k}}{n_{k}} , \quad \chi^{2}_{k} = \sum_{i=1}^{n_{k}} \frac{\left(y^{th}_{k;i} - y^{exp}_{k;i}\right)^{2}}{\sigma^{2}_{k;i}} .$$

[Garcia-Recio, *et al.*, '03], [Borasoy, Nissler, Weise, '05'06] [Ikeda, Hyodo, Weise, '11'12], [Mai, Meissner, '13]

Zhi-Hui Guo (Hebei Normal University), Chiral13

Fit-I (weighted χ^2)

Fit-I-S (standard definition for χ^2)

Fit-I: a common decay constant f for all the channels

[Guo, Oller, '13PRC]

Zhi-Hui Guo (Hebei Normal University), Chiral13

Fit-II (weighted χ^2) Fit-II-S (standard definition for χ^2) Fit-II: distinguish f_{π}, f_{K}, f_{η}

[Guo, Oller, '13PRC]

Zhi-Hui Guo (Hebei Normal University), Chiral13

Figure: 1-10: γ , R_c , R_n , a_{0+}^+ , $\delta_{\pi\Lambda}$, $\sigma_{\pi N}$, m_N , m_{Λ} , m_{Σ} and m_{Ξ}

Figure: Energy shift and width of kaon hydrogen 1s state. IHW: [lkeda, Hyodo and Weise, '11'12], MM: [Mai and Meissner,'13], CS: [Cieply and Smejkal,'12]

Scattering lengths (fm)

This work: [Guo, Oller, '13PRC] $a_{K^-p} = (-0.69^{+0.16}_{-0.16}) + i (0.94^{+0.11}_{-0.11})$

Comparison with other recent determinations:

[Ikeda, Hyodo, Weise, '12NPA]: $a_{K^-p} = (-0.70^{+0.13}_{-0.13}) + i (0.89^{+0.16}_{-0.16})$

[Mai, Meissner, '13NPA]: $a_{K^-p} = (-0.68^{+0.18}_{-0.17}) + i (0.90^{+0.13}_{-0.13})$

$\bar{K}N$ scattering amplitudes in subthreshold region

Figure: Real and imaginary parts of $\mathcal{F}(\sqrt{s}) = \frac{T_{K^- p \to K^- p}(\sqrt{s})}{8\pi\sqrt{s}}$. Fit-l: a common decay constant; Fit-II: f_{π}, f_{K}, f_{η} .

Important: our results indicate the systematic uncertainty (caused by higher chiral order effects) affecting such extrapolation is larger than the statistical one.

[Guo, Oller, '13PRC]

Baryon resonance poles and their couplings

Baryon resonances: $\Lambda(1670)$ and $\Sigma's$

Pole	$ \beta_{\pi\Lambda} $	$ \beta_{\pi\Sigma} _0$	$ \beta_{\pi\Sigma} _1$	$ \beta_{\pi\Sigma} _2$	$ \beta_{\bar{K}N} _0$	$ \beta_{\bar{K}N} _1$	$ \beta_{\eta\Lambda} $	$ \beta_{\eta\Sigma} $	$ \beta_{K\Xi} _0$	$ \beta_{K\Xi} _1$
Λ(1670)										
$1674^{+3}_{-2} - i8^{+6}_{-3}$ (4RS)	$0.0^{+0.0}_{-0.0}$	$0.8^{+0.4}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$1.5^{+0.4}_{-0.2}$	$0.0^{+0.0}_{-0.0}$	$1.5^{+0.2}_{-0.2}$	$0.0^{+0.0}_{-0.0}$	$10.8^{+0.2}_{-0.2}$	$0.1^{+0.0}_{-0.0}$
$1674^{+3}_{-3} - i11^{+7}_{-3}$ (5RS)	$0.0\substack{+0.0\\-0.0}$	$0.9^{+0.4}_{-0.2}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$1.6^{+0.4}_{-0.2}$	$0.0\substack{+0.0\\-0.0}$	$1.7^{+0.5}_{-0.3}$	$0.0\substack{+0.0\\-0.0}$	$11.1_{-0.3}^{+0.3}$	$0.1^{+0.0}_{-0.0}$
$\Sigma I = 1$										
$1646^{+30}_{-127} - i160^{+78}_{-36}$ (4RS)	$3.1^{+1.4}_{-0.5}$	$0.0^{+0.0}_{-0.0}$	$3.0^{+0.4}_{-0.5}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$2.9^{+0.4}_{-0.3}$	$0.0^{+0.0}_{-0.0}$	$7.9^{+1.1}_{-1.2}$	$0.0^{+0.0}_{-0.0}$	$6.4^{+1.4}_{-2.2}$
$1878^{+48}_{-59} - i169^{+27}_{-34}$ (6RS)	$1.0\substack{+0.5\\-0.4}$	$0.0\substack{+0.0\\-0.0}$	$5.8^{+0.9}_{-0.6}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$3.7^{+0.4}_{-0.4}$	$0.0\substack{+0.0\\-0.0}$	$3.9^{+1.1}_{-1.2}$	$0.1\substack{+0.0\\-0.0}$	$16.1^{+2.4}_{-1.6}$

Table: Resonances from Fit I.

Seems not preferred by the CLAS collaboration [Moriya, et.al., PRC'13]

Pole	$ \beta_{\pi\Lambda} $	$ \beta_{\pi\Sigma} _0$	$ \beta_{\pi\Sigma} _1$	$ \beta_{\pi\Sigma} _2$	$ \beta_{\bar{K}N} _0$	$ \beta_{\bar{K}N} _1$	$ \beta_{\eta\Lambda} $	$ \beta_{\eta\Sigma} $	$ \beta_{K\Xi} _0$	$ \beta_{K\Xi} _1$
Λ(1670)										
$1676^{+5}_{-3} - i7^{+5}_{-3}$ (4RS)	$0.0^{+0.0}_{-0.0}$	$0.9^{+0.1}_{-0.1}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$1.5^{+0.4}_{-0.4}$	$0.1^{+0.0}_{-0.0}$	$1.6^{+0.2}_{-0.2}$	$0.1^{+0.0}_{-0.0}$	$10.0^{+0.1}_{-0.1}$	$0.1^{+0.0}_{-0.0}$
$1677^{+5}_{-3} - i11^{+5}_{-3}$ (5RS)	$0.0^{+0.0}_{-0.0}$	$0.8^{+0.1}_{-0.1}$	$0.1^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$1.6^{+0.4}_{-0.4}$	$0.1^{+0.0}_{-0.0}$	$1.8^{+0.2}_{-0.2}$	$0.1^{+0.0}_{-0.0}$	$10.5^{+0.2}_{-0.2}$	$0.1^{+0.0}_{-0.0}$
$\Sigma I = 1$										
$1376^{+3}_{-3} - i 33^{+5}_{-5}$ (3RS)	$2.0^{+0.1}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$0.1^{+0.1}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$0.1^{+0.0}_{-0.0}$	$2.1^{+0.5}_{-0.4}$	$0.0^{+0.0}_{-0.0}$	$4.0^{+0.5}_{-0.3}$	$0.0^{+0.0}_{-0.0}$	$6.3^{+0.2}_{-0.2}$
$1414_{-3}^{+2} - i 12_{-2}^{+1}$ (3RS)	$1.9^{+0.1}_{-0.1}$	$0.3_{-0.1}^{+0.1}$	$1.0^{+0.2}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$0.4^{+0.2}_{-0.1}$	$2.5^{+0.3}_{-0.4}$	$0.2^{+0.1}_{-0.1}$	$3.3^{+0.4}_{-0.4}$	$0.1^{+0.0}_{-0.0}$	$3.3^{+0.3}_{-0.3}$
$1686^{+18}_{-18} - i101^{+9}_{-8}$ (5RS)	$0.2^{+0.1}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$3.5^{+0.2}_{-0.2}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$3.5^{+0.1}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$3.9^{+0.3}_{-0.3}$	$0.1^{+0.0}_{-0.0}$	$10.9^{+0.2}_{-0.2}$
$1741^{+12}_{-13} - i94^{+3}_{-3}$ (6RS)	$1.1^{+0.1}_{-0.1}$	$0.0\substack{+0.0\\-0.0}$	$2.3^{+0.1}_{-0.1}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$2.8^{+0.1}_{-0.1}$	$0.0\substack{+0.0\\-0.0}$	$3.7^{+0.2}_{-0.2}$	$0.1\substack{+0.0\\-0.0}$	$7.9^{+0.3}_{-0.2}$

Table: Resonances from Fit II.

Zhi-Hui Guo (Hebei Normal University), Chiral13

Pole	$ \beta_{\pi\Lambda} $	$ \beta_{\pi\Sigma} _0$	$ \beta_{\pi\Sigma} _1$	$ \beta_{\pi\Sigma} _2$	$ \beta_{\bar{K}N} _0$	$ \beta_{\bar{K}N} _1$	$ \beta_{\eta\Lambda} $	$ \beta_{\eta\Sigma} $	$ \beta_{K\Xi} _0$	$ \beta_{K\Xi} _1$
Λ(1405)										
$1436^{+14}_{-10} - i126^{+24}_{-28}$ (3RS)	$0.0^{+0.0}_{-0.0}$	$8.8^{+0.9}_{-0.4}$	$0.0\substack{+0.0\\-0.0}$	$0.0^{+0.0}_{-0.0}$	$7.7^{+1.3}_{-0.7}$	$0.0^{+0.1}_{-0.0}$	$1.4^{+0.4}_{-0.3}$	$0.0\substack{+0.1 \\ -0.0}$	$2.1^{+0.8}_{-0.7}$	$0.0\substack{+0.0\\-0.0}$
$1417^{+4}_{-4} - i24^{+7}_{-4}$ (3RS)	$0.1^{+0.0}_{-0.0}$	$5.0^{+1.5}_{-0.8}$	$0.1^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$7.7^{+1.2}_{-0.6}$	$0.1^{+0.0}_{-0.0}$	$1.4^{+0.4}_{-0.3}$	$0.1^{+0.0}_{-0.0}$	$1.5^{+0.7}_{-0.5}$	$0.1\substack{+0.0\\-0.0}$

Table: $\Lambda(1405)$ from Fit I.

Pole	$ \beta_{\pi\Lambda} $	$ \beta_{\pi\Sigma} _0$	$ \beta_{\pi\Sigma} _1$	$ \beta_{\pi\Sigma} _2$	$ \beta_{\bar{K}N} _0$	$ \beta_{\bar{K}N} _1$	$ \beta_{\eta\Lambda} $	$ \beta_{\eta\Sigma} $	$ \beta_{K\Xi} _0$	$ \beta_{K\Xi} _1$
Λ(1405)										
$1388^{+9}_{-9} - i114^{+24}_{-25}$ (3RS)	$0.0^{+0.0}_{-0.0}$	$8.2^{+0.8}_{-0.5}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$6.1^{+1.1}_{-0.6}$	$0.1^{+0.0}_{-0.0}$	$2.2^{+0.6}_{-0.3}$	$0.0^{+0.0}_{-0.0}$	$1.9^{+0.2}_{-0.1}$	$0.1^{+0.0}_{-0.0}$
$1421^{+3}_{-2} - i19^{+8}_{-5}$ (3RS)	$0.2\substack{+0.1 \\ -0.1}$	$4.2^{+1.5}_{-0.9}$	$0.2^{+0.0}_{-0.0}$	$0.0\substack{+0.0\\-0.0}$	$6.2^{+1.2}_{-0.5}$	$0.3^{+0.1}_{-0.1}$	$2.8^{+0.5}_{-0.3}$	$0.4^{+0.2}_{-0.1}$	$0.7^{+0.4}_{-0.3}$	$0.4\substack{+0.1 \\ -0.1}$

Table: $\Lambda(1405)$ from Fit II.

Conclusion: re-confirmation of the double pole structure of $\Lambda(1405)$. The narrower one is robust, while the broader one is kind of model-dependent. Fit II seems preferred.

Further investigation about the two poles of $\Lambda(1405)$:

Figure: Contour plot for the modulus of the elastic $I = 0 \ \bar{K}N$ amplitude (blue dashed) and $\pi\Sigma$ amplitude (red solid) *S*-waves for Fit I [left] and Fit II [right].

[Guo, Oller, '13PRC]

Very preliminary results on $\pi\Sigma$ photoproduction

Our formalism reads [Guo, Oller, in preparation]

$$T_{\gamma p \to K^+ \pi^0 \Sigma^0} = r_1 \widetilde{T}^{I=0}|_{\bar{K}N \to \pi \Sigma} + (r_2 + i \bar{r}_2) \widetilde{T}^{I=0}|_{\pi \Sigma \to \pi \Sigma} ,$$

$$T_{\gamma p \to K^{+} \pi^{+} \Sigma^{-}} = r_{1} \widetilde{T}^{I=0}|_{\bar{K}N \to \pi\Sigma} + (r_{2} + i\bar{r}_{2}) \widetilde{T}^{I=0}|_{\pi\Sigma \to \pi\Sigma} + (r_{3} + i\bar{r}_{3}) \widetilde{T}^{I=1}|_{\pi\Sigma \to \pi\Sigma} + (r_{4} + i\bar{r}_{4}) \widetilde{T}^{I=1}|_{\bar{K}N \to \pi\Sigma} + (r_{5} + i\bar{r}_{5}) \widetilde{T}^{I=1}|_{\pi\Lambda \to \pi\Sigma},$$

$$T_{\gamma p \to K^{+} \pi^{+} \Sigma^{-}} = r_{1} \widetilde{T}^{I=0}|_{\bar{K}N \to \pi\Sigma} + (r_{2} + i\bar{r}_{2}) \widetilde{T}^{I=0}|_{\pi\Sigma \to \pi\Sigma} - (r_{3} + i\bar{r}_{3}) \widetilde{T}^{I=1}|_{\pi\Sigma \to \pi\Sigma} - (r_{4} + i\bar{r}_{4}) \widetilde{T}^{I=1}|_{\bar{K}N \to \pi\Sigma} - (r_{5} + i\bar{r}_{5}) \widetilde{T}^{I=1}|_{\pi\Lambda \to \pi\Sigma},$$

with $\widetilde{T} = D^{-1} = [1 + N(W) \cdot g(W^2)]^{-1}$.

Figure: Preliminary results on $\pi^0 \Sigma^0$ photoproduction. Data are taken from [Moriya, *et.al.*, PRC'13]

Zhi-Hui Guo (Hebei Normal University), Chiral13

Figure: Preliminary results on $\pi^+\Sigma^-$ photoproduction

Figure: Preliminary results on $\pi^-\Sigma^+$ photoproduction

Summary and Outlook

- This is a U χ PT study of meson-baryon dynamics with strangeness -1 in S-wave up to next-to-leading order.
- Scattering data, including the recent and precise measurements from Crystal Ball Collaboration, and new results on the kanoic hydrogen from SIDDHARTA are considered. They are consistent.
- Two sources of uncertainties are carefully investigated:
 - **()** A common decay constant *or* distinguishing between f_{π}, f_{K}, f_{η} **(2)** Two different ways to define χ^{2} in the fit
- Large uncertainties of K⁻p scattering amplitudes in subthreshold region are observed. One possible way to improve is to carry out next-to-next-to-leading order study.
- Relevant baryon resonance poles and their couplings are calculated: Λ(1405), Λ(1670) and various Σ's.
- Photoproduction study is on the way!

谢谢大家!