

The seventh international symposium on chiral symmetry in hadrons and nuclei Oct. 27---Oct.30, 2013, Beijing, China

O¹⁶ in relativistic Brueckner-Hartree-Fock theory

Jinniu Hu

School of Physics, Peking University

Collaborators:

Jie Meng Peking University Peter Ring Technical University Munich Peking University

Outline

Introduction

D Relativistic Brueckner-Hartree-Fock theory for finite nuclei

Results and discussion

D Summary & Perspectives

ab initio----- "from the beginning"

- ➤ without additional assumptions
- without additional parameters

ab initio in nuclear physics

- with realistic nucleon-nucleon interaction
- with some few-body methods and many-body methods, such as Monte Carlo method, shell model and energy density functional theory

ab initio in nuclear matter

Variational methodGreen's function method

 \triangleright

- Chiral Perturbation theory
- ➢ Brueckner-Hartree-Fock (BHF) theory Baldo RPP2012
- Relativistic BHF (RBHF) theory Brockmann PRC1990

ab initio calculation for light nuclei

ab initio calculation for heavier nuclei

Coupled Channel method

BHF theory
With HJ potential
With Reid potential
With Bonn potentials

thod Hagen PRL2009 Hjorth-Jensen Phys.Rep.1995 Dawson Ann.Phys.1962 Machleidt NPA1975 Muether PRC1990

	Bonn C	Bonn B	Bonn A	Exp.
E151/2	-39.73	-44.37	-50.46	-40 ± 8
Elpin	-16.98	-19.49	-22.89	-18.4
E1010	-11.64	-13.24	-15.44	-12.1
E	-71.84	-85.60	-104.96	-127.68
r _c	2.465	2.380	2.291	2.737

¹⁶O in BHF method in Bonn potential

Covariant density functional theory

CDFT is very successful in nuclear physics

Ring PPNP1996, Vretenar Phys.Rep.2005, Meng PPNP2006

- Spin-orbit splitting
- Pseudo-spin symmetry
- Nuclear saturation properties
- Exotic nuclei
- ▶

The attempts to connect ab initio calculation with CDFT

The interaction in CDFT were extracted from the ab initio calculation in nuclear matter

Density-dependent relativistic mean field theory

Brockmann PRL1992 Fritz PRL1993

Density-dependent relativistic Hartree-Fock theory

In this work

Calculate the finite nuclei with *ab initio* method in CDFT framework directly, such as relativistic Brueckner-Hartree-Fock theory

Outline

Introduction

□ Relativistic Brueckner-Hartree-Fock theory for finite nuclei

Results and discussion

D Summary & Perspectives

Brueckner-Hartree-Fock theory

Bethe-Goldstone Equation

Brueckner PR1954

$$G = V + V \frac{Q}{E - H_0} G$$

- \succ *E* is the starting energy
- $\succ Q$ is the Pauli operator
- \succ V is the realistic NN interaction

Brueckner-Hartree-Fock energy

Bethe-Goldstone equation in basis space

$$\langle nm|G(\omega)|n'm'\rangle = \langle nm|V|n'm'\rangle + \sum_{\varepsilon_i,\varepsilon_j>\varepsilon_F} \frac{\langle nm|V|ij\rangle\langle ij|G(\omega)|n'm'\rangle}{\omega - (\varepsilon_i + \varepsilon_j)}$$

where ε_F is the Fermi energy, $\omega = \varepsilon_m + \varepsilon_n$ is the starting energy and i, j are intermediate states.

Bethe-Goldstone equation in plane wave basis

$$G_{ll'}^{\alpha}(kk'K\omega) = V_{ll'}^{\alpha}(kk') + \sum_{ll'} \int \frac{d^3q}{(2\pi)^3} V_{ll'}^{\alpha}(kq) \frac{Q(q,K)}{\omega - H_0} G_{ll'}^{\alpha}(qk'K\omega)$$

where α is a shorthand notation for J, S, L and T.

Matrix inversion method

$$G = \left(1 - \frac{V}{\omega - H_0}\right)^{-1} V$$

Relativistic Hartree-Fock (RHF) equation

$$\sum_{n'} \left(\alpha \cdot p + \beta M + \beta \Gamma^{HF} \right)_{nn'} \Psi_{n'} = \varepsilon_n \Psi_n$$

where $\Gamma_{nn'}^{HF}$ is related with the density matrix $\rho_{nn'}$

$$\nabla_{nn'}^{HF} = V_{nmn'm'}\rho_{mm'} - V_{nmm'n'}\rho_{mm'}$$

RHF equation in HO basis

$$\begin{pmatrix} A_{nn'}^{RHF} & B_{n\tilde{n'}}^{RHF} \\ B_{\tilde{n'n}}^{RHF} & C_{\tilde{n}\tilde{n'}}^{RHF} \end{pmatrix} \begin{pmatrix} f_{n'}^{(a)} \\ g_{\tilde{n'}}^{(a)} \end{pmatrix} = \varepsilon_a \begin{pmatrix} f_{n}^{(a)} \\ g_{\tilde{n}}^{(a)} \end{pmatrix}$$

$$\boldsymbol{\psi}_{a} = \left(\sum_{\substack{n=1\\\tilde{n}=1}}^{n_{\max}} f_{n}^{(a)} R_{nl_{a}}(r) \right)$$
$$\sum_{\tilde{n}=1}^{\tilde{n}_{\max}} g_{\tilde{n}}^{(a)} R_{\tilde{n}\tilde{l}_{a}}(r)$$

where

$$\begin{aligned} A_{nn'}^{RHF} &= (\alpha \cdot p + \beta M)_{nn'} + \sum_{b} \sum_{m,m'} f_m^{(b)} f_{m'}^{(b)} (v_{nmn'm'} - v_{nmm'n'}) \\ B_{n\widetilde{n'}}^{RHF} &= (\alpha \cdot p + \beta M)_{n\widetilde{n'}} + \sum_{b} \sum_{m,\widetilde{m'}} f_m^{(b)} g_{\widetilde{m'}}^{(b)} (v_{nm\widetilde{n'm'}} - v_{nm\widetilde{m'n'}}) \\ C_{\widetilde{n}\widetilde{n'}}^{RHF} &= (\alpha \cdot p + \beta M)_{\widetilde{n}\widetilde{n'}} + \sum_{b} \sum_{\widetilde{m},\widetilde{m'}} g_{\widetilde{m}}^{(b)} g_{\widetilde{m'}}^{(b)} (v_{\widetilde{n}\widetilde{m}\widetilde{n'm'}} - v_{\widetilde{n}\widetilde{mm'n'}}) \end{aligned}$$

9

10

Relativistic Brueckner Hartree-Fock (RBHF) equation

$$\sum_{n'} \left(\alpha \cdot p + \beta M + \beta \Gamma^{BHF} \right)_{nn'} \Psi_{n'} = \varepsilon_n \Psi_n$$

where $\Gamma_{nn'}^{BHF}$ is related with the density matrix $\rho_{nn'}$

$$\Gamma_{nn'}^{BHF} = G_{nmn'm'}\rho_{mm'} - G_{nmm'n'}\rho_{mm}$$

RHF equation in HO basis

$$\begin{pmatrix} A_{nn'}^{BHF} & B_{n\tilde{n'}}^{BHF} \\ B_{\tilde{n'}n}^{BHF} & C_{\tilde{n}\tilde{n'}}^{BHF} \\ \end{pmatrix} \begin{pmatrix} f_{n'}^{(a)} \\ g_{\tilde{n'}}^{(a)} \end{pmatrix} = \varepsilon_a \begin{pmatrix} f_{n}^{(a)} \\ g_{n}^{(a)} \\ g_{n}^{(a)} \end{pmatrix}$$

where

$$A_{nn'}^{BHF} = (\alpha \cdot p + \beta M)_{nn'} + \sum_{b} \sum_{m,m'} f_m^{(b)} f_{m'}^{(b)} G_{nmn'm'}$$
$$B_{n\widetilde{n'}}^{BHF} = (\alpha \cdot p + \beta M)_{n\widetilde{n'}} + \sum_{b} \sum_{m,\widetilde{m'}} f_m^{(b)} g_{\widetilde{m'}}^{(b)} G_{nm\widetilde{n'}}^{(b)} G_{nm\widetilde{n'}m'}$$
$$C_{\widetilde{n\widetilde{n'}}}^{BHF} = (\alpha \cdot p + \beta M)_{\widetilde{n\widetilde{n'}}} + \sum_{b} \sum_{\widetilde{m,\widetilde{m'}}} g_{\widetilde{m}}^{(b)} g_{\widetilde{m'}}^{(b)} G_{\widetilde{nm\widetilde{n'}m'}}$$

Outline

Introduction

D Relativistic Brueckner-Hartree-Fock theory for finite nuclei

Results and discussion

D Summary & Perspectives

11

The convergence of RBHF theory

Example

- ➢ Object: ¹⁶O
- ➢ Interaction: Bonn A

Machleidt ANP1987

12

➢ Basis: Harmonics Oscillator (HO)

The convergence of RBHF theory for ¹⁶O

The ground state properties of ¹⁶O in RBHF theory

The properties of ¹⁶O with different numerical methods

[1] Audi NPA2003, [2] Muether PRC1990, [3]Long PLB2006

The Single particle energies for the orbit level of ¹⁶O in RBHF theory

DDRH and DDRHF from RBHF theory

The Lagrangian of Density-dependent RH (DDRH) theory

Brockmann PRL1992

ρ)σ

$$L = \overline{\Psi}_{N} (i \gamma_{\mu} \partial^{\mu} - M_{N} - g_{\sigma N}(\rho) \sigma - g_{\omega N}(\rho) \gamma_{\mu} \omega^{\mu} - e \gamma_{\mu} \frac{1 - \tau^{3}}{2} A^{\mu}) \Psi_{N}$$
$$+ \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega_{\mu \nu} \Omega^{\mu \nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu}$$
$$U_{S} = g_{\sigma B} (U_{V}) = g_{\omega B} (U_{V})$$

The Lagrangian of Density-dependent RHF (DDRHF) theory

Fritz PRL1993

$$L = \overline{\Psi}_{N} (i\gamma_{\mu}\partial^{\mu} - M_{N} - g_{\sigma N}(\rho)\sigma - g_{\omega N}(\rho)\gamma_{\mu}\omega^{\mu} - \frac{f_{\pi N}}{m_{\pi}}(\rho)\tau^{a}\gamma_{5}\gamma_{\mu}\partial^{\mu}\pi^{a} - e\gamma_{\mu}\frac{1-\tau^{3}}{2}A^{\mu})\Psi_{N}$$
$$+ \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}$$
$$+ \frac{1}{2}\partial_{\mu}\pi^{a}\partial^{\mu}\pi^{a} - \frac{1}{2}m_{\pi}^{2}\pi^{a2}$$
$$U_{N} = g_{\omega B}(\rho)\omega$$

The relativistic Hartree-Fock equation

Bouyssy PRC1987

$$\frac{d}{dr} \begin{pmatrix} G_{a}(r) \\ F_{a}(r) \end{pmatrix} = \begin{pmatrix} -\frac{\kappa_{a}}{r} - \Sigma_{T,a}^{D} - P_{a}(r) & M - E_{a} + \Sigma_{S,a}^{D} - \Sigma_{0,a}^{D} + Q_{a}(r) \\ M - E_{a} + \Sigma_{S,a}^{D} + \Sigma_{0,a}^{D} + R_{a}(r) & \frac{\kappa_{a}}{r} + \Sigma_{T,a}^{D} + S_{a}(r) \end{pmatrix} \begin{pmatrix} G_{a}(r) \\ F_{a}(r) \end{pmatrix}$$

The properties of ¹⁶O in different theories

	EXP.	DDRH*	DDRHF*	RBHF
	[1]			(N=28)
E (MeV)	-127.62	-107.72	-114.76	-119.55
r_c (fm)	2.737	2.602	2.634	2.636
$\varepsilon_{1p_{1/2}} - \varepsilon_{1p_{3/2}}$ (MeV)	6.3	5.2	4.8	4.1

[1] Audi NPA2003* DD couplings extracted from RBHF theory at nuclear matter

The relation between binding energy and radii of ¹⁶O in different theories

16

DDRH and DDRHF from RBHF theory

The densities of ¹⁶O in different theories

北京大学

PEKING UNIVERSITY

Outline

Introduction

D Relativistic Brueckner-Hartree-Fock theory for finite nuclei

D Results and discussion

Summary & Perspectives

- The relativistic Brueckner-Hartree-Fock (RBHF) theory is developed for finite nuclei with HO basis.
- The results of RBHF theory with Bonn A potential at N = 28 is reliable, e.g. ¹⁶O.
- The binding energy and charge radii from RBHF theory are close to experimental data, and are comparable with the ones from the PKO1.
- In future calculation, the heavier nuclei is feasible.

Thank you very much for your attention!

Appendix

Lippmann-Schwinger Equation

Brown NPA1969

- $T = V + V \frac{1}{E H_0} T$ > V is the realistic NN interaction
- \succ *E* is the incident energy
- > T-matrix is for two-body scattering

The corresponding EOS in HF

Bethe-Goldstone Equation

- Brueckner PRC1969 $T = V + V \frac{Q}{E - H_0} T$
- \succ E is the starting energy
- $\triangleright Q$ is the Pauli operator
- \succ *G*-matrix is for many-body problem

The corresponding EOS in HF

The ground state properties of other nuclei in RBHF theory

	E (MeV)			<u>r</u> _c (fm)			$\varepsilon_{1p_{1/2}} - \varepsilon_{1p_{3/2}}$ (MeV)		
	Exp.	RBHF	PKO1	Exp.	RBHF	PK01	Exp.	RBHF	PK01
¹⁴ C	-105.73	-98.49	-106.66	2.50	2.42	2.45	<u></u>	4.6	6.6
¹⁴ O	-98.73	-91.51	-100.48	-	2.67	2.68	_	_	_
⁴⁰ Ca	-342.05	-322.41	-341.93	3.48	3.37	3.43	7.2	5.7	6.5
⁴⁸ Ca	-416.16	-385.62	-415.62	3.47	3.41	3.45	4.3	3.1	6.2
⁵⁶ Ni	-483.95	-439.26	-484.61	—	3.62	3.67	_	1.2	1.8

The deviations of binding energy between experiment and RBHF

 $\frac{^{14}\text{C}}{(E_{\text{exp.}} - E_{RBHF})/E_{\text{exp.}}(\%)} = \frac{^{14}\text{C}}{6.85} = \frac{^{16}\text{O}}{7.31} = \frac{^{40}\text{Ca}}{6.32} = \frac{^{48}\text{Ca}}{5.74} = \frac{^{56}\text{Ni}}{7.34} = 9.23$

The binding energy is missing less than10% in RBHF comparing with the data
The spin-orbit splitting is small

2013/8/26

The relation between binding energy and radii of doubly magic nuclei in different theories

2013/8/26

The relation between binding energy and radii of other nuclei in different theories

The relation between binding energy and radii of other nuclei in different theories

2013/8/26