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• BESIII claims the existence of a resonance in the reaction             
e+e- → (D* D*)±π∓  at √s = 4.26 GeV (arXiv:1308.2760 [hep-ex]).

Zc(4025){ Mass (4026.3±2.6±3.7) MeV  

width (24.8±5.6±7.7) MeV

I=1, JP=1+ (D* D* in S-wave)

• Theoretical interpretations: 2+ tetraquark state, 1+ D* D* states 
using HQSS, QCD sum rules, pion exchange, etc.1

Masses compatible with Zc(4025), but large uncertainties

1 Guo, Hidalgo-Duque, Nieves, PRD88,054007 (2013); Chen, Steele, Du, Zhu, arxiv: 1308.5060[hep-ph].
  Cui, Liu, Huang, arxiv: 1308.3625 [hep-ph]; He, Liu, Sun, Zhu, arxiv: 1308.2999; Qiao, Tang, arxiv: 1308.3439 [hep-ph]
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FIG. 4. Unbinned maximum likelihood fit to the π− recoil
mass spectrum in data. See the text for a detailed description
of the various components that were used in the fit.

The signal yield of the Z+
c (4025) is estimated by an

unbinned maximum likelihood fit to the spectrum of
RM(π−). The fit results are shown in Fig. 4. Possible
interference between the Z+

c (4025) signals and the PHSP
processes is neglected. The Z+

c (4025) signal shape is
taken as the efficiency-weighted BW shape convoluted
with a detector resolution function, which is obtained
from a MC simulation. The detector resolution is about
2MeV/c2 and is asymmetric due to the effects of ISR.
The shape of the combinatorial backgrounds is taken
from the kernel-estimate [20] of the WS events and its
magnitude is fixed to the number of the fitted background
events within the signal window in Fig. 3. The shape of
the PHSP signal is taken from the MC simulation and
its amplitude is taken as a free parameter in the fit. By
using the MC shape, the smearing due to ISR effect and
the detector resolution is taken into account. From the
fit, the parameters of m and Γ in Eq. (1) are determined
to be

m(Z+
c (4025)) = (4026.3± 2.6)MeV/c2,

Γ(Z+
c (4025)) = (24.8± 5.6)MeV.

A goodness-of-fit test gives a χ2/d.o.f.= 30.4/33 = 0.92.
The Z+

c (4025) signal is observed with a statistical signifi-
cance of 13σ, as determined by the ratio of the maximum
likelihood value and the likelihood value for a fit with a
null-signal hypothesis. When the systematic uncertain-
ties are taken into account, the significance is evaluated
to be larger than 10σ.
The Born cross section is calculated by σ = nsig

L(1+δ)εB ,
where nsig is the number of the observed signal events,
L is the integrated luminosity, ε is the detection effi-
ciency, 1 + δ is the radiative correction factor and B
is the branching fraction of D∗+ → D+(π0, γ), with
D+ → K−π+π+. From the fit results, we obtaine
560.1 ± 30.6 D∗+D̄∗0π− events, among which 400.9 ±
47.3 events are Z+

c (4025) candidates. With the in-
put of the observed center-of-mass energy dependence
of σ(D∗+D̄∗0π−), the radiative correction factor is cal-
culated to second-order in QED [21] to be 0.78 ± 0.03.

Source m(MeV/c2) Γ(MeV) σtot(%) R(%)
Tracking 4
Particle ID 5
Tagging π0 4
Mass scale 1.8
Signal shape 1.4 7.3 1 5
Backgrounds 1.5 0.6 5 5
Efficiencies 0.9 2.2 1 5
D∗∗ states 2.2 0.7 5 2
Fit range 0.9 0.9 1 1
D∗+D̄∗0π− line shape 4
PHSP model 2 2
Luminosity 1.0
Branching fractions 2.6
total 3.7 7.7 11 9

TABLE I. A summary of the systematic uncertainties on
the measurements of the Z+

c (4025) resonance parameters and
cross sections. We denote σtot = σ(e+e− → (D∗D̄∗)±π∓).
The total systematic uncertainty is taken as the square root
of the quadratic sum of the individual undertainties.

The efficiency for the Z+
c (4025) signal process is deter-

mined to be 23.5%, while the efficiency of the PHSP sig-
nal process is 17.4%. The total cross section σ(e+e− →
(D∗D̄∗)∓π±) is measured to be (137± 9) pb, and the ra-

tio R = σ(e+e−→Z±
c (4025)π∓→(D∗D̄∗)±π∓)

σ(e+e−→(D∗D̄∗)±π∓)
is determined to

be 0.65± 0.09.
Sources of systematic errors on the measurement of

the Z+
c (4025) resonance parameters and the cross sec-

tion are listed in Table I. The main sources of systematic
uncertainties relevant for determining the Z+

c (4025) reso-
nance parameters and the ratio R include the mass scale,
the signal shape, background models and potential D∗∗

backgrounds. We use the process e+e− → D+D̄∗0π−

to study the mass scale of the recoil mass of the low
momentum bachelor π−. By fitting the peak of D̄∗0

in the D+π− recoil mass spectrum, we obtain a mass
of 2008.6 ± 0.1MeV/c2. This deviates from the PDG
reference value by 1.6 ± 0.2MeV/c2. Since the fitted
variable RM(D+π−) + M(D+) − m(D+) removes the
correlation with M(D+), the shift mostly is due to the
momentum measurement of the bachelor π−. Hence,
we take the mass shift of 1.8MeV/c2 as a systematic
uncertainty on RM(π−) due to the mass scale. If one
assumes Z+

c (4025) also decay to other final states such
as π+(ψ(2S), J/ψ, hc), variations of their relative cou-
pling strengths would affect the measurements of the
Z+
c (4025) mass and width. The Flatté formula [22] is

used to take into account possible multiple channels,
and the maximum changes on the mass and the width
are 0.4MeV/c2 and 0.1MeV, respectively. When we as-
sume that the relative momentum between the π− and
Z+
c (4025) in the rest frame of the e+e− system is a P -

wave, the mass and width change from the nominal re-
sults by 1.4MeV/c2 and 7.3MeV, respectively. The max-
imum variations are taken as systematic uncertainties.
Variations in the unbinned and non-parametric kernel-
estimate of the WS events and fluctuations of the esti-
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- The peak is just 10 MeV 
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- Peaks close to the threshold 
  can be due to a state below 
  the threshold (EPJA36,189;  
  PLB719,388; arxiv:1306.6594

  [hep-ph]).
- In Wan, Sun, et al., arxiv: 
  1308.3158, they show some 
  enhancement close to 
  threshold can occur.
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A Bound state?

Out[42]=



INTRODUCTION
• If JP=1+, Zc can decay to π J/ψ. The process e+e- → π+ π- J/ψ at 

√s = 4.26 GeV only shows the Zc(3900) (BESIII,PRL110,252001).

a mass difference of 2:1 MeV=c2, a width difference of
3.7 MeV, and production ratio difference of 2.6% absolute.
Assuming the Zcð3900Þ couples strongly with D !D# results
in an energy dependence of the total width [22], and the fit
yields a difference of 2:1 MeV=c2 for mass, 15.4 MeV for
width, and no change for the production ratio. We estimate
the uncertainty due to the background shape by changing to
a third-order polynomial or a phase space shape, varying
the fit range, and varying the requirements on the !2 of the
kinematic fit. We find differences of 3:5 MeV=c2 for mass,
12.1 MeV for width, and 7.1% absolute for the production
ratio. Uncertainties due to the mass resolution are esti-
mated by increasing the resolution determined by MC
simulations by 16%, which is the difference between the
MC simulated and measured mass resolutions of the J=c
and D0 signals. We find the difference is 1.0 MeV in the
width, and 0.2% absolute in the production ratio, which are
taken as the systematic errors. Assuming all the sources of
systematic uncertainty are independent, the total system-
atic error is 4:9 MeV=c2 for mass, 20 MeV for width and
7.5% for the production ratio.

In Summary, we have studied eþe% ! "þ"%J=c at a
c.m. energy of 4.26 GeV. The cross section is measured to
be ð62:9& 1:9& 3:7Þ pb, which agrees with the existing
results from the BABAR [5], Belle [3], and CLEO [4]
experiments. In addition, a structure with a mass of
ð3899:0& 3:6& 4:9Þ MeV=c2 and a width of ð46& 10&
20Þ MeV is observed in the "&J=c mass spectrum. This
structure couples to charmonium and has an electric
charge, which is suggestive of a state containing more
quarks than just a charm and anticharm quark. Similar
studies were performed in B decays, with unconfirmed
structures reported in the "&c ð3686Þ and "&!c1 systems
[23–26]. It is also noted that model-dependent calculations
exist that attempt to explain the charged bottomonium-
like structures which may also apply to the charmonium-
like structures, and there were model predictions of

charmoniumlike structures near the D !D# and D# !D#

thresholds [27].
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FIG. 4 (color online). Fit to the Mmaxð"&J=c Þ distribution as
described in the text. Dots with error bars are data; the red solid
curve shows the total fit, and the blue dotted curve the back-
ground from the fit; the red dotted-dashed histogram shows the
result of a phase space (PHSP) MC simulation; and the green
shaded histogram shows the normalized J=c sideband events.
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• A single channel with an energy independent potential can 
generate bound states, but not resonances (Yamagata-Nieves-Oset, 
PRD83, 014003).



THE D*D* SYSTEM

• Studied using effective field theories based on the hidden local 
symmetry and solving the Bethe-Salpeter equation (Molina, Oset, 
PRD80,114013).
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><t =><V >V <t+

e+

e−
γ(k)

D(q)

D̄∗(k − q)

D∗(q − p)

π(p)

FIG. 1. Feynman diagram of a mechanism allowing the production of D∗D̄∗ in D-waves. Momenta
are shown in brackets.

where p, k, q are the momenta depicted in Fig. 1 and

Lν ≡ v̄(p+)γνu(p
−). (2)

In Eq. (2), p+ (p−) represents the momentum of the e+ (e−). To determine the amplitude of
Eq. (1), it is convenient to work in the e+e− center of mass (CM) frame, in which the three
momentum of the photon, #k, is zero, leaving in this way only the contribution from the k0

component in Eq. (1). On the other hand, in the reaction depicted in Fig. 1, the external
three momenta of the D∗ and D̄∗ are small, a fact which allows us to drop the ε0 component
of the polarization vectors, as done in Ref. [15]. Thus, Eq. (1) gets simplified to,

t ∝ k0εijkLiqj(q + p)m
1

q2 −m2
D + iε

εk(D̄
∗)εm(D

∗). (3)

As can be seen, Eq. (3) contains the term qjqm, which carries D-wave. On the other hand
it is also interesting to see that the combination εm(D∗)εk(D̄∗) contains spin S = 2 for the
vector mesons. Indeed, for low momenta of the vectors the spin projectors over spin 0, 1, 2
are given by [42]:

P (0) =
1

3
#ε · #ε ′δkm,

P (1) =
1

2
(εmε

′
k − εkε

′
m) , (4)

P (2) =
1

2
(εmε

′
k + εkε

′
m)−

1

3
#ε · #ε ′δkm,

where #ε is the polarization vector of the D∗ and ε′ the one of the D̄∗. It is easy to see that,

εmε
′
k = P (0) + P (1) + P (2) (5)

and, hence, the amplitude of Eq. (3) has components of D-wave and S = 2 for the two
vector mesons.

It remains to see that the D-wave structure and the S = 2 character of the D∗D̄∗ system
are preserved upon interaction of the final D∗D̄∗ states to produce the state predicted in

5
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THE D*D* SYSTEM
• QCD sum rules (Khemchandani, Martínez Torres, Nielsen, Navarra et al., 

arxiv: 1310.0862 [hep-ph])

closely spaced masses and overlapping widths are being found, it is very important to make

a careful analysis to judge if all of them are different or are sometimes replicas of each other.

To add to the efforts in understanding these newly found states, we make a study of the

D∗D̄∗ molecule-like current in the isospin 1 configuration using QCD sum rules and study

its different spin configurations.

A system of two vector mesons can possess a total spin-parity 0+, 1+ or 2+ when inter-

acting in s-wave. Such configurations of two vector mesons are ideally suited to formation

of moleculelike resonances as the constituent hadrons posses little energy. Since the masses

of some Zc’s are close to the threshold of open charm meson systems, some of them could
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and then apply the spin projectors discussed in Ref. [11] to it. The 0+, 1+ and 2+ components

of the correlation function written in Eq. (2) can be obtained using the following projectors

P(0) =
1

3
∆µν∆αβ,

P(1) =
1

2

(

∆µα∆νβ −∆µβ∆να
)

, (3)

P(2) =
1

2

(

∆µα∆νβ +∆µβ∆να
)

−
1

3
∆µν∆αβ,

where ∆µν is defined in terms of the metric tensor, gµν , and the four momentum q of the

correlation function as

∆µν ≡ −gµν +
qµqν
q2

. (4)

These projectors were obtained in Ref. [11] by building an analogy with the work done in

Ref. [19] where the s-wave D∗ρ interaction was studied using effective field theory. Some

of these projectors coincide with those determined in Ref. [20], where projectors for more

spin-parity cases are given. As mentioned earlier, we are interested in studying 0+, 1+ and

2+ configurations of D∗D̄∗ keeping in mind that the low energy interaction of these two

mesons is dominated by s-wave scattering which is a favorable situation for formation of

moleculelike states.

The motivation behind separating only the positive parity components is to look for

moleculelike states with mass close to the threshold of the constituent hadrons, in which

case there is little energy available for the hadrons, which as a consequence interact in s-wave.

A moleculelike picture for Zc(4025) seems to be quite plausible since its mass is merely 8

MeV away from the D̄∗0D∗+ threshold. In other words, here we want to see if Zc(4025) can

be interpreted as a 1+ or 2+ resonance of the D̄∗0D∗+ system. The 0+ assignment is ruled

out for Zc(4025) by spin-parity conservation for the e+e− →
(

D∗D̄∗
)±
π± process. However,

some other Zc resonance with 0+ might exist.

As is well known, the QCD sum rules method is based on the dual nature of the correlation

function: it can be interpreted as quark-antiquark fluctuations at short distances, which is

usually referred to as the QCD side, while it can be related to hadrons at large distances,

which is referred to as the phenomenological side. In this method, thus one calculates

the correlation function within both interpretations and equates the two results with the

conviction that the two sides must be equivalent in some range of q2 [21–24]. The calculation
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• Results: three nearly spin degenerated states (0+,1+,2+) with 
masses 3950±100 MeV.
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where p, k, q are the momenta depicted in Fig. 1 and

Lν ≡ v̄(p+)γνu(p
−). (2)

In Eq. (2), p+ (p−) represents the momentum of the e+ (e−). To determine the amplitude of
Eq. (1), it is convenient to work in the e+e− center of mass (CM) frame, in which the three
momentum of the photon, #k, is zero, leaving in this way only the contribution from the k0

component in Eq. (1). On the other hand, in the reaction depicted in Fig. 1, the external
three momenta of the D∗ and D̄∗ are small, a fact which allows us to drop the ε0 component
of the polarization vectors, as done in Ref. [15]. Thus, Eq. (1) gets simplified to,

t ∝ k0εijkLiqj(q + p)m
1

q2 −m2
D + iε

εk(D̄
∗)εm(D

∗). (3)

As can be seen, Eq. (3) contains the term qjqm, which carries D-wave. On the other hand
it is also interesting to see that the combination εm(D∗)εk(D̄∗) contains spin S = 2 for the
vector mesons. Indeed, for low momenta of the vectors the spin projectors over spin 0, 1, 2
are given by [42]:

P (0) =
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P (1) =
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(εmε
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m) , (4)
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(εmε

′
k + εkε

′
m)−

1

3
#ε · #ε ′δkm,

where #ε is the polarization vector of the D∗ and ε′ the one of the D̄∗. It is easy to see that,

εmε
′
k = P (0) + P (1) + P (2) (5)

and, hence, the amplitude of Eq. (3) has components of D-wave and S = 2 for the two
vector mesons.

It remains to see that the D-wave structure and the S = 2 character of the D∗D̄∗ system
are preserved upon interaction of the final D∗D̄∗ states to produce the state predicted in

5
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• The D-wave character and  the spin 2 structure is preserved 
upon interaction of the final D*D* states
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B. Invariant mass distribution

In the production of a D∗D̄∗ resonant state we shall assume that the amplitude depends
on the invariant mass of D∗D̄∗, MD∗D̄∗ , as done in Ref. [1]. In this case the differential cross
section is given by [3]

dσ

dMD∗D̄∗

∝
m2

e

s
√
s
pq̃ |T |2 FL, (10)

where p is the pion momentum in the e+e− CM frame and q̃ is the D∗ momentum in the
D∗D̄∗ CM frame:

p =
λ1/2(s,m2

π,M
2
D∗D̄∗

)

2
√
s

, (11)

q̃ =
λ1/2(M2

D∗D̄∗ , m2
D∗ , m2

D̄∗)

2MD∗D̄∗

. (12)

The factor FL = p2L is needed to account for the partial wave in which the D∗D̄∗ system
is produced (L = 0 for S-waves and L = 2 for D-waves), and T is an amplitude which we
parametrize as

T =
A

M2
D∗D̄∗

−M2
R + iMRΓR

, A ≡ constant (13)

for the case of a resonance produced with mass MR and width ΓR. In case of a pure phase
space, T would be taken as a constant.

In general, as done in Ref. [1], the D∗D̄∗ invariant mass distribution can have contri-
bution from a small background proportional to the phase space, and from combinatorial
backgrounds (estimated by combining a reconstructed D+ with a pion of the wrong charge,
see Ref. [1] for more details) referred to as wrong sign (WS) background. Thus, we can write

dσ

dMD∗D̄∗

=
m2

e

s
√
s
pq̃

(

|T |2 FL +B
)

+WS, (14)

where B represents a constant.

III. RESULTS

A. Invariant mass distribution

In this section we show the results found using Eq. (14) for the D∗D̄∗ invariant mass
distribution of the process e+e− → (D∗D̄∗)±π∓ at the same energy than the one considered
in Ref. [1], that is,

√
s = 4.26 GeV. We determine the D∗D̄∗ spectrum for the following

cases:

I. Production of a 1+ D∗D̄∗ resonance in relative S-wave with the pion.

II. Production of a 1+ D∗D̄∗ bound state in relative S-wave with the pion.
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RESULTS

FIG. 3. Invariant D∗D̄∗ mass distribution obtained using Eq. (14) for the case of a 1+ resonance
in relative S-wave with respect to pion, mass MR = 4030 MeV and width ΓR = 34 MeV. From

now onwards we use the following nomenclature in the figures: PHSP means phase space, BKG
means background and WS means wrong sign.

FIG. 4. Invariant mass D∗D̄∗ spectrum obtained using Eq. (14) to fit the data of Ref. [1]. In this

case, we consider the formation of a 1+ D∗D̄∗ bound state in relative S-wave with the pion.
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case, we consider the formation of a 1+ D∗D̄∗ bound state in relative S-wave with the pion.
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2+ bound state produced in D-wave
(M=3990 MeV, 𝛤=160 MeV)

2+ resonance produced in D-wave
(M=4030 MeV, 𝛤=80 MeV)

Case III: A 2+ D∗D̄∗ bound state in relative D-wave with the pion.

In Ref. [15] a D∗D̄∗ bound state is found with isospin 1, spin-parity 2+, mass around
3900-3970 MeV and width 140− 200 MeV. The BES collaboration has attributed the signal
observed in the D∗D̄∗ invariant mass distribution of the process e+e− → (D∗D̄∗)±π∓ to a 1+

resonance produced in relative S-wave with the pion. However, the spin-parity conservation
does not rule out a D∗D̄∗ state with spin-parity 2+ (as the one found in Ref. [15]) and
relative angular momentum L = 2, i.e., D-wave production. We show the D∗D̄∗ spectrum
calculated for this option in Fig. 5. As can be seen, a bound state with a mass of MR = 3990
MeV and width ΓR = 160 MeV, although being below the D∗D̄∗ threshold and broad, when
convoluted with the phase space factor produces a narrower bump 10− 15 MeV above the
D∗D̄∗ threshold. The χ2/n.d.o.f obtained in this case is ∼ 1.2, thus this option is a plausible
explanation for the signal found in Ref. [1].

FIG. 5. Invariant mass distribution obtained from Eq. (14) for the case of a 2+ D∗D̄∗ bound

state in D-wave with the pion. The best fit to the data gives a mass MR = 3990 MeV and width
ΓR = 160 MeV.

Case IV: A 2+ D∗D̄∗ resonance in relative D-wave with the pion.

One could also consider the formation of a 2+ resonance in the D∗D̄∗ system in relative D-
wave, instead of a bound state as in case III, as the mechanism responsible for the spectrum
obtained in Ref. [1]. The result is shown in Fig. 6 for the case MR = 4030 MeV and width
ΓR = 80 MeV. As can be seen, the solution found in this way is perfectly compatible with
the data (χ2/n.d.o.f ∼ 1.1).
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FIG. 6. Invariant mass distribution obtained considering Eq. (14) to fit the data with a 2+ resonance
in relative D-wave with the pion. We obtain from the fit: massMR = 4030 MeV and width ΓR = 80

MeV.

Case V: D-wave background.

One could also wonder if a resonance or bound state is needed to explain the signal found
by the BES collaboration in Ref. [1]. In Fig. 7 we show the solution obtained considering a
pure D-wave background in Eq. (14). Surprisingly, this possibility is also compatible with
the data, obtaining a χ2/n.d.o.f ∼ 1.1.

As a summary of this section, we have studied the origin of the signal found 10 − 15
MeV above the D∗D̄∗ threshold in Ref. [1]. We conclude that, although the existence of a
1+ resonance with mass ∼ 4030 MeV, narrow width, ∼ 30 MeV, and relative S-wave with
respect the pion, as assumed in Ref. [1], is compatible with the data, there are more options
with which the signal can be explained: a broad 2+ bound D∗D̄∗ state in relative D-wave
with the pion of the reaction considered; a 2+ resonance above the D∗D̄∗ threshold in D-
wave with the pion or simply a D-wave background. All these options are equally plausible
to describe the spectrum and the signal found in Ref. [1].

B. Energy dependence of the D∗D̄∗ invariant mass distribution

It would be interesting to know if there could be a way of finding which option, out of the
different ones studied in Sec. IIIA and compatible with the data of Ref. [1], is responsible for
the signal observed close to the D∗D̄∗ threshold. A way to do this consists in investigating
the dependence of the solutions found in Sec. IIIA with the center of mass energy,

√
s. The

experiment considered in Ref. [1] was studied at a center of mass energy of
√
s = 4.26 GeV.

In this section we show how the results of Sec. IIIA change when the center of mass energy
is taken to be

√
s = 4.4 GeV and

√
s = 4.6 GeV. It should be added here that we have

taken the background of WS events given in Ref. [1] for all values of
√
s, although it could
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D-wave backgroundFIG. 7. Invariant mass spectrum obtained from a fit to the data with a pure D-wave background.

also change with the center of mass energy.

Case I: A 1+ D∗D̄∗ resonance in relative S-wave with the pion.

We show in Fig. 8 the D∗D̄∗ invariant mass distribution for the case of a 1+ resonance
with 4030 MeV of mass and 34 MeV of width in relative S-wave with the pion for three
values of

√
s, 4.26, 4.4 and 4.6 GeV. To compare them, we have renormalized (here and in

the following cases) the results associated to the energies
√
s = 4.4 GeV and

√
s = 4.6 GeV

to the one of
√
s = 4.26 GeV. As can be seen, not much changes in the D∗D̄∗ invariant mass

spectrum while varying
√
s.

Case II: A 1+ D∗D̄∗ bound state in relative S-wave with the pion.

We do not consider this case, since the fit shown in Fig. 4 and the χ2/n.d.o.f obtained
already indicate that this option is the least plausible one to explain the D∗D̄∗ spectrum
found in Ref. [1].

Case III: A 2+ D∗D̄∗ bound state in relative D-wave with the pion.

In case of production of a broad bound state at 3990 MeV in D-wave with the pion,
the D∗D̄∗ invariant mass distribution changes more than in case I when

√
s is increased,

specially for
√
s ∼ 4.6 GeV (see Fig. 9). The different energy behavior between the option

tried in case I and the one considered here can be useful to determine if the signal is due to
a resonance in relative S-wave or a bound state in relative D-wave with the pion present in
the reaction studied in Ref. [1].
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• Is there a way to know which of the different options is 

responsible for the signal found?

FIG. 8. Invariant mass distribution obtained from a fit to the data with a 1+ resonance in relative
S-wave with the pion, mass MR = 4030 MeV and width ΓR = 34 MeV for different

√
s values.

FIG. 9. Invariant mass distribution obtained for a 2+ D∗D̄∗ bound state (MR = 3990 MeV,

ΓR = 160 MeV) in relative D wave with the pion for different values of
√
s.

Case IV: A 2+ D∗D̄∗ resonance in relative D-wave with the pion.

In Fig. 10 we show the results found for the D∗D̄∗ spectrum while varying
√
s for the

case of a 2+ resonance in the D∗D̄∗ system with mass 4030 MeV and width 80 MeV which is
in relative D wave with respect to the pion. As can be seen, the energy dependence found is
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1+ resonance produced in S-wave
(M=4030 MeV, 𝛤=34 MeV)

As BESIII
FIG. 8. Invariant mass distribution obtained from a fit to the data with a 1+ resonance in relative
S-wave with the pion, mass MR = 4030 MeV and width ΓR = 34 MeV for different

√
s values.

FIG. 9. Invariant mass distribution obtained for a 2+ D∗D̄∗ bound state (MR = 3990 MeV,

ΓR = 160 MeV) in relative D wave with the pion for different values of
√
s.

Case IV: A 2+ D∗D̄∗ resonance in relative D-wave with the pion.

In Fig. 10 we show the results found for the D∗D̄∗ spectrum while varying
√
s for the

case of a 2+ resonance in the D∗D̄∗ system with mass 4030 MeV and width 80 MeV which is
in relative D wave with respect to the pion. As can be seen, the energy dependence found is
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FIG. 10. Invariant mass distribution obtained for a 2+ D∗D̄∗ resonance (MR = 4030 MeV, ΓR = 80
MeV) in relative D wave with the pion for different values of

√
s.

very weak, and, as in case I, the invariant mass distribution obtained for the three energies
considered is compatible, within the error bars, with the data points found for

√
s = 4.26

GeV by the BES collaboration in Ref. [1]. However, the changes obtained in the spectrum
when varying

√
s are more appreciable than in case of the 1+ resonance produced in S-wave

(case I). Thus, according to our findings, if an experimental study of the D∗D̄∗ spectrum
is done at different center of mass energies, it would be possible to identify if the signal
observed in the invariant mass distribution is due to the formation of resonance or a bound
state in the D∗D̄∗ system. However, it would be difficult to judge if the signal correspond
to a 1+ resonance or to a 2+ resonance.

Case V: D-wave background.

For this case, the changes observed in the D∗D̄∗ invariant mass distribution while increas-
ing

√
s from 4.26 GeV to 4.6 GeV are very pronounced, a finding which definitely should be

helpful in ruling out a D-wave background as responsible for the signal reported in Ref. [1]
(see Fig. 11).

IV. CONCLUSIONS

In this manuscript we have determined theD∗D̄∗ invariant mass spectrum for the reaction
e+e− → (D∗D̄∗)±π∓, studied by the BES collaboration [1]. We have found that, apart from
the solution proposed in Ref. [1] to explain the signal observed close to the D∗D̄∗ threshold,
which is a 1+ resonance with mass ∼ 4030 MeV and width ∼ 30 MeV, other options are
also equally compatible with the data: a molecular 2+ D∗D̄∗ bound state or resonance in
relative D-wave with the pion or just a pure D-wave background are options which can not
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2+ resonance produced in D-wave
(M=4030 MeV, 𝛤=80 MeV)

FIG. 11. Invariant mass distribution obtained with a D wave background for different values of√
s.

be disregarded. With the idea of motivating further experimental studies which could clarify
the origin of the signal obtained in Ref. [1], we study the modification experienced by the
D∗D̄∗ invariant mass spectrum when the center of mass energy is varied from

√
s = 4.26

GeV to 4.6 GeV. As a result, we find that it is possible to clarify if the spectrum of Ref. [1]
is due to a resonance, to a bound state or a pure D-wave background. However, if the origin
turns out to be a resonance, then, it would be difficult to know if its spin-parity is 1+ or
2+. This information should be certainly useful for further experimental analysis and can
be used to shed some light on the intriguing signal found by the BES collaboration.
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CONCLUSIONS

• We have obtained the D* D* invariant mass distribution 
associated to the e+e- → (D* D*)±π∓ reaction.

• We have found that the signal related to a the Zc(4025) can also 
correspond to a 2+ bound state, a 2+ resonance or just to a D-
wave background.

• All of them are equally plausible.

• Studying the dependence of the invariant mass distribution with 
the CM energy it could be possible to distinguish between a 
resonance (1+ or 2+) and a 2+ bound state.
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