PEKING UNIVERSITY The Seventh International Symposium on Chiral Symmetry in Hadrons and Nuclei，
27－30 October，2013，Beijing，China

Antimagnetic rotation in nuclei：
 A microscopic description

Pengwei Zhao

School of Physics，Peking University

Rotation bands in nuclei

- Substantial quadrupole deformation
- Strong electric quadrupole (E2) transitions
- Rotational bands with $\Delta I=2$
- Coherent collective rotation of many nucleons

Bohr PRI95I

Magnetic Rotation (MR)

- near-spherical or weakly deformed nuclei
- strong MI and very weak E2 transitions
- rotational bands with $\Delta I=I$
- shears mechanism

Hübel PPNP2005

Experiment: MR

Magnetic rotation: 85 nuclei

Antimagnetic Rotation (AMR)

Magnetic rotation \Longleftrightarrow Ferromagnet

\checkmark rotational bands with $\Delta I=I$
\checkmark near spherical nuclei; weak E2 transitions
\checkmark strong MI transitions
$\checkmark \mathrm{B}(\mathrm{MI})$ decrease with spin

\checkmark shears mechanism
Antimagnetic rotation \Longleftrightarrow Antiferromagnet
\checkmark rotational bands with $\Delta I=2$
\checkmark near spherical nuclei; weak E2 transitions
\checkmark no MI transitions
$\checkmark B(E 2)$ decrease with spin

\checkmark two "shears-like" mechanism

Experiment: AMR

Small B(E2)

Decrease tendency
Large J(2)/B(E2)
Increase tendency

Simons PRL2003; Simons PRC2005

Theory

$\sqrt{ }$ Semiclassical particle plus rotor model Clark ARNPS2000 simple geometry for the energies and transition probabilities
$\sqrt{ }$ Pairing-plus-quadrupole tilted axis cranking (TAC) model a schematic Hamiltonian Frauendorf NPAI993; Frauendorf NPA2000

A fully self-consistent microscopic investigation?

DFT: Cranking version

- TAC based on Covariant Density Functional Theory

Meson exchange version:
3-D Cranking: Madokoro, Meng, Matsuzaki, Yamaji, PRC 62, 061301 (2000)
2-D Cranking: Peng, Meng, Ring, Zhang, PRC 78, 024313 (2008)
Point-coupling version: Simple and more suitable for systematic investigations
2-D Cranking: PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

- TAC based on Skyrme Density Functional Theory

3-D Cranking: Olbratowski, Dobaczewski, Dudek, Płóciennik, PRL 93, 052501(2004)
2-D Cranking: Olbratowski, Dobaczewski, Dudek, Rzaca-Urban, Marcinkowska, Lieder, APPB 33, 389(2002)

Fully self-consistent microscopic investigations
$>$ fully taken into account polarization effects
$>$ self-consistently treated the nuclear currents
$>$ without any adjustable parameters for rotational excitations

Tilted axis cranking CDFT

General Lagrangian density

$$
\begin{aligned}
L= & \bar{\psi}\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi \\
& -\frac{1}{2} \alpha_{S}(\overline{\psi \psi} \psi)(\bar{\psi} \psi)-\frac{1}{2} \alpha_{V}\left(\overline{\psi \gamma}{ }_{\mu} \psi\right)\left(\overline{\psi \gamma} \gamma^{\mu} \psi\right) \\
& -\frac{1}{2} \alpha_{T V}\left(\overline{\psi \tau} \gamma_{\mu} \psi\right)(\overline{\psi \tau} \bar{\gamma} \psi \psi)-\frac{1}{3} \beta_{S}(\overline{\psi \psi})^{3}-\frac{1}{4} \\
& -\frac{1}{4} \gamma_{V}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\overline{\psi \gamma} \gamma^{\mu} \psi\right)\right]^{2}-\frac{1}{2} \delta_{S} \partial_{v}(\bar{\psi} \psi) \partial^{\nu}(\\
& -e \frac{1-\tau_{3}}{2} \overline{\psi \gamma}{ }^{\mu} \psi A_{\mu}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
\end{aligned}
$$

$$
-\frac{1}{2} \alpha_{T V}\left(\bar{\psi} \vec{\tau} \gamma_{\mu} \psi\right)\left(\overline{\psi \tau} \bar{\gamma}^{\mu} \psi\right)-\frac{1}{3} \beta_{S}(\bar{\psi} \psi)^{3}-\frac{1}{4} \gamma_{S}(\bar{\psi} \psi)^{4}
$$

$$
\left.-\frac{1}{4} \gamma_{V}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\bar{\psi} \gamma^{\mu} \psi\right)\right]^{2}-\frac{1}{2} \delta_{S} \partial_{v}(\bar{\psi} \psi) \partial^{v}(\bar{\psi} \psi)-\frac{1}{2} \delta_{V} \partial_{v}\left(\overline{\psi \gamma}{ }_{\mu} \psi\right) \partial^{v}\left(\overline{\psi \gamma}{ }^{\mu} \psi\right)-\frac{1}{2} \delta_{T V} \partial_{v}\left(\overline{\psi \tau} \bar{\gamma}_{\mu} \psi\right) \partial^{v}(\overline{\psi \tau}\rangle_{\mu} \psi\right)
$$

Transformed to the frame rotating with the uniform velocity

$$
\begin{aligned}
\Omega & =\left(\Omega_{x}, 0, \Omega_{z}\right)=\left(\Omega \cos \theta_{\Omega}, 0, \Omega \sin \theta_{\Omega}\right) \\
x^{\alpha} & =\binom{t}{\mathbf{x}} \rightarrow \tilde{x}^{\alpha}=\binom{\tilde{t}}{\tilde{\mathbf{x}}}=\left(\begin{array}{ll}
1 & 0 \\
0 & \mathbf{R}
\end{array}\right)\binom{t}{\mathbf{x}}
\end{aligned}
$$

Equation of motion

Dirac equation

$$
\begin{aligned}
& \left(\begin{array}{cc}
m+S+V-\Omega \bullet J & \sigma(p-\mathbf{V}) \\
\sigma(p-\mathbf{V}) & -m-S+V-\Omega \bullet J
\end{array}\right)\binom{f}{g}=\varepsilon\binom{f}{g} \\
& V(r)=\alpha_{V} \rho_{V}+\gamma_{V} \rho_{V}^{3}+\delta_{V} \Delta \rho_{V}+\tau_{3} \alpha_{T V} \rho_{T V}+\tau_{3} \delta_{T V} \Delta \rho_{T V}+e \frac{1-\tau_{3}}{2} A \\
& \mathbf{V}(r)=\alpha_{V} \mathbf{j}_{V}+\gamma_{V} \mathbf{j}_{V}^{3}+\delta_{V} \Delta \mathbf{j}_{V}+\tau_{3} \alpha_{T V} \mathbf{j}_{T V}+\tau_{3} \delta_{T V} \Delta \mathbf{j}_{T V}+e \frac{1-\tau_{3}}{2} \mathbf{A} \\
& S(r)=\alpha_{S} \rho_{S}+\beta_{S} \rho_{S}^{2}+\gamma_{S} \rho_{S}^{3}+\delta_{S} \Delta \rho_{S}
\end{aligned}
$$

$V(r)$ vector potential time-like
$\mathrm{V}(r)$ vector potential space-like

Observables

Binding energy

$$
\begin{aligned}
E_{\text {tot }}= & \sum_{k=1}^{A} \epsilon_{k}-\int d^{3} r\left\{\frac{1}{2} \alpha_{S} \rho_{S}^{2}+\frac{1}{2} \alpha_{V} j_{V}^{\mu}\left(j_{V}\right)_{\mu}\right. \\
& +\frac{1}{2} \alpha_{T V} j_{T V}^{\mu}\left(j_{T V}\right)_{\mu}+\frac{2}{3} \beta_{S} \rho_{S}^{3}+\frac{3}{4} \gamma_{S} \rho_{S}^{4} \\
& +\frac{3}{4} \gamma_{V}\left(j_{V}^{\mu}\left(j_{V}\right)_{\mu}\right)^{2}+\frac{1}{2} \delta_{S} \rho_{S} \Delta \rho_{S}+\frac{1}{2} \delta_{V}\left(j_{V}\right)_{\mu} \Delta j_{V}^{\mu} \\
& \left.+\frac{1}{2} \delta_{T V} j_{T V}^{\mu} \Delta\left(j_{T V}\right)_{\mu}+\frac{1}{2} e j_{p}^{0} A_{0}\right\}+\sum_{k=1}^{A}\langle k| \Omega \hat{J}|k\rangle \\
& +E_{\text {c.m. }} .
\end{aligned}
$$

Angular momentum

$$
J=\sqrt{\left\langle\hat{J}_{x}\right\rangle^{2}+\left\langle\hat{J}_{z}\right\rangle^{2}} \equiv \sqrt{I(I+1)}
$$

Observables

Binding energy

$$
\begin{aligned}
E_{\text {tot }}= & \sum_{k=1}^{A} \epsilon_{k}-\int d^{3} r\left\{\frac{1}{2} \alpha_{S} \rho_{S}^{2}+\frac{1}{2} \alpha_{V} j_{V}^{\mu}\left(j_{V}\right)_{\mu}\right. \\
& +\frac{1}{2} \alpha_{T V} j_{T V}^{\mu}\left(j_{T V}\right)_{\mu}+\frac{2}{3} \beta_{S} \rho_{S}^{3}+\frac{3}{4} \gamma_{S} \rho_{S}^{4} \\
& +\frac{3}{4} \gamma_{V}\left(j_{V}^{\mu}\left(j_{V}\right)_{\mu}\right)^{2}+\frac{1}{2} \delta_{S} \rho_{S} \Delta \rho_{S}+\frac{1}{2} \delta_{V}\left(j_{V}\right)_{\mu} \Delta j_{V}^{\mu} \\
& \left.+\frac{1}{2} \delta_{T V} j_{T V}^{\mu} \Delta\left(j_{T V}\right)_{\mu}+\frac{1}{2} e j_{p}^{0} A_{0}\right\}+\sum_{k=1}^{A}\langle k| \Omega \hat{J}|k\rangle \\
& +E_{\text {c.m. }} .
\end{aligned}
$$

Angular momentum

$$
J=\sqrt{\left\langle\hat{J}_{x}\right\rangle^{2}+\left\langle\hat{J}_{z}\right\rangle^{2}} \equiv \sqrt{I(I+1)}
$$

$B(M 1)$ and $B(E 2)$ transition probabilites

$$
\begin{aligned}
& B(M 1)=\frac{3}{8 \pi} \mu_{\perp}^{2}=\frac{3}{8 \pi}\left(\mu_{x} \sin \theta_{J}-\mu_{z} \cos \theta_{J}\right)^{2}, \\
& B(E 2)=\frac{3}{8}\left[Q_{20}^{p} \cos ^{2} \theta_{J}+\sqrt{\frac{2}{3}} Q_{22}^{p}\left(1+\sin ^{2} \theta_{J}\right)\right]^{2}
\end{aligned}
$$

AMR in ${ }^{105} \mathrm{Cd}$

First odd-A nucleus with antimagnetic rotation

Choudhury et al, PRC 82,061308 (20I0)

Numerical Details

\checkmark Harmonic oscillator shells: $\mathrm{Nf}=10$
\checkmark Effective interaction: PC-PK1
\checkmark Configurations: $\quad \nu\left[h_{11 / 2}\left(g_{7 / 2}\right)^{2}\right] \otimes \pi\left[\left(g_{9 / 2}\right)^{-2}\right]$
\checkmark Polarizations:

Single particle routhians

\checkmark Time reversal symmetry broken: energy splitting
\checkmark For proton, two holes in the top of $g_{9 / 2}$ shell
\checkmark For neutron, one particle in the bottom of $h_{11 / 2}$ shell, the other six are distributed over the (gd) shell with strong mixing
\checkmark This configuration is similar to $\nu\left[h_{11 / 2}\left(g_{7 / 2}\right)^{2}\right] \otimes \pi\left[\left(g_{9 / 2}\right)^{-2}\right]$, but not exactly

Energy and angular momentum

\checkmark The energy and total angular momentum agree well with the data.
\checkmark The spin increase linearly with frequency / nearly constant moment of inertia.
\checkmark Without polarization, a much smaller frequency is needed to reach the same angular momentum.
\checkmark Without polarization, there is a maximal angular momentum of roughly $17 \hbar$

$B(E 2)$ and deformation

PWZ, Peng, Liang, Ring, Meng PRL 107, 122501(2011)
\checkmark The calculated B(E2) values are in excellent agreement with the data.
\checkmark The $B(E 2)$ values decrease with the increasing spin / two "shears-like" mechanism.
\checkmark Without polarization, the $B(E 2)$ values are reduced to only $\sim 60 \%$ of the self-consistent results, and dropped to zero when the frequency $\Omega \geq 0: 5 \mathrm{MeV}$.
\checkmark It is of importance to emphasize that polarization effects play a very important role in the self-consistent microscopic description of AMR bands, especially for theE2 transitions.

Two shears mechanism

PWZ, Peng, Liang, Ring, Meng PRL 107, 122501(2011)
\checkmark The two proton angular momentum are pointing opposite to each other and are nearly perpendicular to the neutron angular momentum. They form the blades of the two shears.
\checkmark Increasing Ω, the two proton blades towards to each other and generates the total angular momentum.

Summary

$>$ Covariant density functional theory has been extended to describe rotational excitations including MR and AMR.
$>{ }^{105} \mathrm{Cd}: \mathrm{AMR}$
reproduce well the AMR pictures, E, I, and $B(E 2)$ values in a fully self-consistent microscopic way for the first time

In collaboration with

Haozhao Liang
Jie Meng
Jing Peng
Peter Ring

Shuangquan Zhang

Thank You!

Single-particle angular momentum

\checkmark For the protons, only the two holes in the $g_{9 / 2}$ shell contribute.
\checkmark For the neutrons, only the particles above the $\mathrm{N}=50$ shell contribute.
\checkmark Angular momentum results from the alignment of proton holes and the mixing within the neutron orbitals.
\checkmark Due to the strong mixing between neutrons, a core in the phenomenological model cannot be well defined.

