# Observation of $e^{+} e^{-} \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ 

QING GAO ${ }^{1}$, $\mathrm{KE} \mathrm{LI}^{1,2}$<br>ON BEHALF OF THE BESIII COLLABORATION<br>${ }^{1}$ Institute of High Energy Physics, Chinese Academy of Sciences<br>Beijing 100049, China<br>gaoq@ihep.ac.cn<br>${ }^{2}$ Shandong University, Jinan 250100, People's Republic of China like@ihep.ac.cn


#### Abstract

Using data samples collected with the BESIII detector operating at the BEPCII storage ring at central-of-mass(CM) energies from 4.009 to 4.420 GeV , the $e^{+} e^{-} \rightarrow \gamma X(3872)$ process is observed with a statistical significance of more than $5 \sigma$. The measured mass is in agreement with previous measurements. The products of cross section of $e^{+} e^{-} \rightarrow \gamma X(3872)$ and the branching fraction $\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)$ at CM energies $4.009,4.229,4.260$, and 4.360 GeV is reported. The results support the possibility that $Y(4260) \rightarrow \gamma X(3872)$.


Keywords: X(3872)
PACS numbers: 14.40.Rt, 13.20.Gd, 13.66.Bc, 13.40.Hq, 14.40.Pq

## 1. Introduction

The $\mathrm{X}(3872)$ was discovered ${ }^{1}$ by Belle in $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} J / \psi$ in 2003. Since its discovery, $X(3872)$ has simulated great interest in its nature. The LHCb experiment determined ${ }^{2}$ the quantum numbers of the $X(3872)$ to be $J^{P C}=1^{++}$, and CDF also found that the $\pi^{+} \pi^{-}$system was dominated by the $\rho^{0}(770)$ resonance ${ }^{3}$.

Since the mass is near $D \bar{D}^{*}$ threshold, the $X(3872)$ was interpreted as a good candidate for a hadronic molecule or a tetraquark state. Currently, the $X(3872)$ has only been observed in $B$ meson decays and hadron collisions. BESIII can hunt for it in excited $1^{--}$E1 transitions, using the process $e^{+} e^{-} \rightarrow \gamma X(3872)$.

## 2. Observation of the $X$ (3872)

The process of $e^{+} e^{-} \rightarrow \gamma X(3872) \rightarrow \gamma \pi^{+} \pi^{-} J / \psi, J / \psi \rightarrow l^{+} l^{-}\left(l^{+} l^{-}=e^{+} e^{-}\right.$or $\mu^{+} \mu^{-}$) is observed with a statistical significance of more than $5 \sigma$ for the first time with data collected with the BESIII detector operating at the BEPCII storage ring ${ }^{4}$ at $e^{+} e^{-}$center-of-mass (CM) energies from $\sqrt{s}=4.009 \mathrm{GeV}$ to $4.420 \mathrm{GeV}^{5}$ with an integral luminosity of $3301.0 \pm 33.1 \mathrm{pb}^{-1}$.

Figure 1 shows the $\pi^{+} \pi^{-} J / \psi$ invariant mass distribution for all data samples. Where $M\left(\pi^{+} \pi^{-} J / \psi\right)=M\left(\pi^{+} \pi^{-} l^{+} l^{-}\right)-M\left(l^{+} l^{-}\right)+m(J / \psi)$ is used to reduce the resolution effect of the lepton pairs, and $m(J / \psi)$ is the nominal mass of $J / \psi^{6}$. There is a huge $e^{+} e^{-} \rightarrow \gamma_{I S R} \psi(2 S)$ peak which is used to calibrate and to validate the analysis. In addition, $\mathrm{X}(3872)$ can also be clearly seen. Remaining backgrounds mainly come from $e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi^{-} J / \psi, \eta \prime J / \psi$ and $\pi^{+} \pi^{-} \pi^{+} \pi^{-}\left(\pi^{0} / \gamma\right)$ processes. But none of them form peaks around the $X(3872)$ signal region.


Fig. 1. The invariant mass distribution of $M\left(\pi^{+} \pi^{-} J / \psi\right)$ for all data samples. Dots with error bars are data, green shaded histograms are normalized $J / \psi$ sideband events.

The mass of $\mathrm{X}(3872)$ is determined by fitting the $M\left(\pi^{+} \pi^{-} J / \psi\right)$ distribution (shown in Fig. 2), which use a MC simulated signal histogram convolved with a Gaussian function representing the difference in the mass resolution between data and MC simulation as the signal shape, and a linear function for the background. The fit result is $M(X(3872))=(3871.9 \pm 0.7) \mathrm{MeV} / c^{2}, \sigma=1.14 \mathrm{MeV} / c^{2}, N^{\text {obs }}=$ $20.1 \pm 4.5$. The statistical significance of $X(3872)$ is $6.3 \sigma$.

Figure 3 shows the $\pi^{+} \pi^{-}$invariant mass distribution for the selected $X(3872)$ candidates, which is dominated by the $\rho^{0}(770)$ resonance and consistent with the CDF observation ${ }^{3}$.

The product of the Born-order cross section times the branching ratio $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ is calculated using $\sigma^{B}\left(e^{+} e^{-} \rightarrow \gamma X(3872)\right) \times \mathcal{B}(X(3872) \rightarrow$ $\left.\pi^{+} \pi^{-} J / \psi\right)=\frac{N^{o b s}}{\mathcal{L}_{\text {int }}(1+\delta) \epsilon \mathcal{B}}$, where $N^{o b s}$ is the number of observed events obtained from the fit to the $M\left(\pi^{+} \pi^{-} J / \psi\right)$ distribution, $\mathcal{L}_{\text {int }}$ is integrated luminosity, $\epsilon$ is the detection efficiency, $\mathcal{B}$ is the branching ratio of $J / \psi \rightarrow l^{+} l^{-}$and $1+\delta$ is the radiative correction factor. The $(1+\delta)$ factor, detection efficiency, number of $X(3872)$ signal events, and $\sigma^{B}\left(e^{+} e^{-} \rightarrow \gamma X(3872)\right) \times \mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)$ at $\sqrt{s}=4.009 \mathrm{GeV}$,


Fig. 2. Fit of the $M\left(\pi^{+} \pi^{-} J / \psi\right)$ distribution with a MC simulated histogram convolved with a Gaussian function for signal and a linear background function. Dots with error bars are data, the red curve shows the total fit result, while the blue dashed curve shows the background contribution.


Fig. 3. The $M\left(\pi^{+} \pi^{-}\right)$distribution for $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ candidate events. Dots with error bars are data, and the green shaded histogram is normalized background events in $X(3872)$ sideband region.
$4.229 \mathrm{GeV}, 4.260 \mathrm{GeV}$ and 4.360 GeV are listed in Table. 1. For 4.009 and 4.360 GeV data, since the $X(3872)$ signal is not significant, upper limits for production yield at the $90 \%$ C.L. are given.

Table 1. The number of $X(3872)$ events, radiative correction factor, detection efficiency, measured Born cross section $\sigma^{B}\left(e^{+} e^{-} \rightarrow \gamma X(3872)\right)$ times $\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)$ $\left(\sigma^{B} \times \mathcal{B}\right.$, where the first errors are statistical and the second are systematic) at different energy points. The upper limits are given at the $90 \%$ C.L..

| Energy (MeV) | $\epsilon(\%)$ | $1+\delta$ | $N^{o b s}$ | $\sigma^{B} \times \mathcal{B}(\mathrm{pb})$ |
| :---: | :---: | :---: | :---: | :---: |
| 4009 | 25.5 | 0.861 | $<1.4$ | $<0.12$ |
| 4229 | 31.5 | 0.799 | $9.6 \pm 3.1$ | $0.29 \pm 0.10 \pm 0.02$ |
| 4260 | 30.5 | 0.814 | $8.7 \pm 3.0$ | $0.36 \pm 0.13 \pm 0.03$ |
| 4360 | 21.1 | 1.023 | $<5.1$ | $<0.39$ |

## 3. Summary

The process of $e^{+} e^{-} \rightarrow \gamma X(3872)$ is observed for the first time. The measured mass of the $X(3872)$ is $M(X(3872))=(3871.9 \pm 0.7 \pm 0.2) \mathrm{MeV} / c^{2}$, which agrees well with previous measurements ${ }^{6}$. The production rate $\sigma^{B}\left(e^{+} e^{-} \rightarrow \gamma X(3872)\right) \times$ $\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)$ is measured to be $(0.29 \pm 0.10 \pm 0.02) \mathrm{pb}$ at $\sqrt{s}=4.229$ $\mathrm{GeV},(0.36 \pm 0.13 \pm 0.03) \mathrm{pb}$ at $\sqrt{s}=4.260 \mathrm{GeV},<0.12 \mathrm{pb}$ at $\sqrt{s}=4.009 \mathrm{GeV}$, and $<0.39 \mathrm{pb}$ at $\sqrt{s}=4.360 \mathrm{GeV}$ at the $90 \%$ C.L., respectively. Where the first errors are statistical and the second are systematic. The observation suggests that the $X(3872)$ might be from the radiative transition of the $Y(4260)$.

## References

1. S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
2. R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 72, 1972 (2012); arXiv:1302.6269.
3. A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 102002 (2006).
4. M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 614, 345 (2010).
5. M. Ablikim et al. (BESIII Collaboration), arXiv:1309.1896.
6. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
