Search for Fermionic Higgs Boson Decays in *pp* Collisions at ATLAS and CMS

Romain Madar on behalf of ATLAS and CMS collaboration

Physikalisches Institut Albert-Ludwigs-Universität, Freiburg – Germany

Physics In Collision Conference – Beijing, China 4th of September 2013

Romain Madar (Freiburg University)

The Higgs boson in a nutshell

Fundamental interest :

The Higgs boson is the relic particle of the Electroweak symmetry breaking :

$$SU(2)_L \times U(1)_Y$$

$$\rightarrow U(1)_{em}$$

(Lagrangian symmetry)

(Vacuum symmetry)

The Higgs boson in a nutshell

Fundamental interest :

The Higgs boson is the relic particle of the Electroweak symmetry breaking :

$$SU(2)_L \times U(1)_Y \longrightarrow U(1)_{em}$$

(Lagrangian symmetry) (Vacuum symmetry)

Status of couplings between the Higgs boson and other fields?

- Direct observation of bosonic decays
- Direct evidence of fermionic decays
- Indirect observation of coupling to fermion (loop-induced production)

The Higgs boson in a nutshell

Fundamental interest :

The Higgs boson is the relic particle of the Electroweak symmetry breaking :

$$SU(2)_L \times U(1)_Y \longrightarrow U(1)_{em}$$

(Lagrangian symmetry) (Vacuum symmetry)

Status of couplings between the Higgs boson and other fields?

- Direct observation of bosonic decays
- Direct evidence of fermionic decays
- Indirect observation of coupling to fermion (loop-induced production)

Key role of direct fermionic coupling :

- Reduce experimental uncertainties on coupling & branching ratios
- Disantangle potential new physics from SM coupling in loops

1. Production of H(125) $\sigma_{\rm tot}(H) = 22.1 \, {\rm pb} \ \sigma_{\rm tot}(Z) \sim 10^4 \, {\rm pb}$ \bar{q}' W/Z \bar{q}' $\bar{q'}$ gg4000 Н Н Н 90 g QQQ gqqqΗ GGF (88%) VBF (6.6%) VH (5%) ttH (0.4%) high rate but loops. low rate but tree level. low rate but clean extremely low rate and no specific topology specific jet topology final state (leptons) busy final state

2. Decays of H(125) (emphasis on fermionic decay)

- *bb* decay : largest BR, benefits from additional lepton to reduce *pp* → *bb* + *X*.
- $\tau \tau$ decay : lower BR, cleaner signature
- cc decay : impossible in hadron collider
- μμ decay : extremely low BR (0.02%), good mass resolution

Key particles identification (1/2)

 $\tau_{\rm had} \approx {\rm narrower \ jet \ with \ lower} \\ {\rm track \ multiplicities}$

Key particles identification (1/2)

 $\tau_{\rm had} \approx {\rm narrower \ jet \ with \ lower} \\ {\rm track \ multiplicities}$

ATLAS : ~7 observables combined in a BDT

 $\begin{array}{c} \text{ATLAS \& CMS} \\ \epsilon_{\tau} \sim 50\% \\ \epsilon_{\text{jets}} \sim 1\% \end{array}$

Romain Madar (Freiburg University)

Key particles identification (2/2)

Based on *b*-hadron properties :

- $c\tau \sim \text{few mm}$, higher mass
- Displaced vertex of high mass
- Semi-leptonic decay

Background : c-hadrons

Algorithm : multivariate techniques to exploit all these properties and their correlations (\sim 5 input variables).

Key particles identification (2/2)

Based on *b*-hadron properties :

- $c\tau \sim \text{few mm}$, higher mass
- Displaced vertex of high mass
- Semi-leptonic decay

Background : c-hadrons

Algorithm : multivariate techniques to exploit all these properties and their correlations (\sim 5 input variables).

Romain Madar (Freiburg University)

4 Dedicated searches for *ttH* production

ATLAS and CMS analyses overview

Analyzed integrated luminosity (fb⁻¹) of 7 and 8 TeV collisions

	bb final state				au au final state		
	ATLAS	CMS			ATLAS	CMS	
GGF	-	-		GGF	19 130	19 19 /	
VBF	-	19.0		VBF	4.9 ± 15.0	4.9 + 19.4	
VH	4.7+ 20.3	5.0 + 19.0		VH	-	19.0	
ttH	4.7	19.0		ttH	-	19.0	

(bold : most sensitive process, gray : impossible to extract from background)

+ inclusive search in the $\mu\mu$ final state in ATLAS (20.7)

Documentation:

- ATLAS $H \rightarrow \tau \tau : \underline{\text{GGF+VBF}}$
- ATLAS $H \rightarrow bb : \underline{VH}, \underline{ttH}$
- ATLAS $H \rightarrow \mu \mu$: <u>inclusive</u>

- CMS $H \rightarrow \tau \tau$: <u>GGF+VBF</u>, <u>VH</u>
- CMS $H \rightarrow bb : \underline{VH}, \underline{VBF}$
- CMS ttH : $\underline{\tau\tau}$ and \underline{bb}

1 Search for $H \rightarrow bb$ decay

- **(2)** Search for $H \rightarrow \tau \tau$ decay
- Dedicated searches for ttH production

Search for $H \rightarrow bb$ decay

Search for $H \rightarrow bb$

Which production mode for *bb* final state?

All but gluon fusion $\sigma_{\rm tot}(b\bar{b}) \sim 10^7 {\rm \ pb}$

qqbb final state **high bkg rate**

W/Z signature **most sensitive**

dedicated search, see later

Search for $H \rightarrow bb$ decay

Search for $H \rightarrow bb$

Relevant observable : *m*_{bb}

References : ATLAS-CONF-2013-079, CMS PAS HIG-13-012, CMS PAS HIG-13-011

VH production

1. Analysis strategy : number of leptons \equiv vector boson decay

VH production

1. Analysis strategy : number of leptons \equiv vector boson decay

- 2. Standard Model backgrounds :
 - top quark production
 - W/Z + bb production same final state as signal
 - W/Z + u/d/s/c (fake *b*-jet)
 - Multijets production (fake/non isolated lepton and *b*-jet)

VH production

1. Analysis strategy : number of leptons \equiv vector boson decay

- 2. Standard Model backgrounds :
 - top quark production
 - W/Z + bb production same final state as signal
 - W/Z + u/d/s/c (fake *b*-jet)
 - Multijets production (fake/non isolated lepton and *b*-jet)

3. Main kinematic handles :

- *m*_{bb} reconstruction (look for a bump in *m*_{bb} distribution)
- Transverse momentum of vector boson (higher S/\sqrt{B} at high p_T^V)

Controlling the background

General approach : global fit of data over several categories of different background composition (n_{ℓ} , p_T^V , n_{b-jets})

- background normalization & shape
- account for signal contamination
- include systematics uncertainties (b-tagging, Jet Energy Scale, ...)

Controlling the background

General approach : global fit of data over several categories of different background composition $(n_{\ell}, p_T^V, n_{b-iets})$

- background normalization & shape
- account for signal contamination
- include systematics uncertainties (b-tagging, Jet Energy Scale, ...)

2 leptons, *low pT[V]*

Romain Madar (Freiburg University)

Signal extraction

Strategy : exploit topology differences between signal and background

- Properties of (b, \bar{b}) system (mass, angle, color connection, ...)
- Direction of \mathbf{E}_{T} relative to (b, \bar{b}) system
- Consistency of $(\mathbf{E}_{\mathrm{T}}, \ell)$ system as coming from *W* decay
- ATLAS : cut then look at *m*_{bb} ; CMS : MVA (+cut based as cross check)

Signal extraction

Strategy : exploit topology differences between signal and background

- Properties of (b, \bar{b}) system (mass, angle, color connection, ...)
- Direction of \mathbf{E}_{T} relative to (b, \bar{b}) system
- Consistency of (\mathbb{E}_T, ℓ) system as coming from *W* decay
- ATLAS : cut then look at *m*_{bb} ; CMS : MVA (+cut based as cross check)

12 / 39

Method validation

All these technics can be applied to extract $VZ(\rightarrow bb)$ production (very similar signature), as a validation of the experimental method.

Method validation

All these technics can be applied to extract $VZ(\rightarrow bb)$ production (very similar signature), as a validation of the experimental method.

Search for $H \rightarrow bb$ decay

Results of VH(bb) search (1/3)

Search for $H \rightarrow bb$ decay

Results of VH(bb) search (2/3)

Results of *VH*(*bb*) **search** (3/3)

Vector boson fusion production

- 1. Analysis strategy : look at qqbb final state
 - Dedicated 4jets triggers exploiting VBF topology (high $\Delta \eta_{jj}$)
 - Select 2 forward jets with high *m*_{jj} also specific to the VBF production
 - Apply b-tagging criteria for the non forward jets
 - Discrimination of quark/gluon jets (different fragmenation)
- 2. Main background : QCD production of 4 jets events

Vector boson fusion production

- 1. Analysis strategy : look at qqbb final state
 - Dedicated 4jets triggers exploiting VBF topology (high $\Delta \eta_{jj}$)
 - Select 2 forward jets with high *m*_{jj} also specific to the VBF production
 - Apply b-tagging criteria for the non forward jets
 - Discrimination of quark/gluon jets (different fragmenation)
- 2. Main background : QCD production of 4 jets events

Search for $H \rightarrow bb$ decay

Signal extraction :

Categories based in BDT (VBF tagging jets, b-tagging) Then look at m_{bb} distribution. Combine categories.

Search for $H \rightarrow bb$ decay

Signal extraction :

Categories based in BDT (VBF tagging jets, b-tagging) Then look at m_{bb} distribution. Combine categories.

*m*_{bb} distribution and result :

Search for H
ightarrow au au decay

- **3** Search for $H
 ightarrow \mu \mu$ decay
- Dedicated searches for ttH production

Search for H
ightarrow au au decay

Search for $H \rightarrow \tau \tau$

Which production mode? All of them are exploited

Search for H
ightarrow au au decay

Search for $H \rightarrow \tau \tau$

Which production mode? All of them are exploited

Experimental challenges for $H \rightarrow \tau \tau$:

- Decay of τ pair into stable particles leads to 3 different final states
- Reconstruction of (τ, τ) invariant mass (escaping neutrinos)
- Energy scale determination of hadronic τ decays (and its uncertainty)

References : ATLAS-CONF-2012-160 CMS PAS HIG-13-004, CMS PAS HIG-12-053

Search for $H \to \tau \tau$ decay

Search for $H \rightarrow \tau \tau$ decay

Search for H ightarrow au au decay

Common strategy :

- Search for a bump in $m_{\tau\tau}$ on top of dominant background : $Z \rightarrow \tau\tau$
- Data-driven estimation of $Z \rightarrow \tau \tau$: use $Z \rightarrow \mu \mu$ data events with μ pair replaced by simulated τ pair (non τ quantities are *data*).
- Exploit VBF via di-jet topology (high $\Delta \eta_{jj}$, high m_{jj})
- Exploit GGF at high (τ, τ) boost : better RMS(\not{E}_T) \rightarrow better RMS $(m_{\tau\tau})$
- Reduce and understand the fake τs (see next slide)

Search for $H \rightarrow \tau \tau$ decay

Search for $H \rightarrow \tau \tau$ decay

Search for H
ightarrow au au decay

$m_{\tau\tau}$ distribution

Search for $H \rightarrow \tau \tau$ decay

Results : exclusion limit

Search for $H \rightarrow \tau \tau$ decay

Results : compatibility with background only

Search for H ightarrow au au decay

Some highlights :

- 2.85 σ excess for CMS, compatible with $H \rightarrow \tau \tau$ SM process
- ATLAS needs to add remaining 8 TeV data
- CMS $bb + \tau\tau$ combination leads to 3.4 σ excess fermionic decay
- Start to probe Higgs field properties in fermionic final state

Search for H o au au decay

Associated production VH

Search for $H \rightarrow \tau \tau$ decay

Associated production VH

Search for H
ightarrow au au decay

Associated production VH

Search for $H \rightarrow \mu\mu$ decay

2 Search for $H \rightarrow \tau \tau$ decay

Dedicated searches for ttH production

Search for $H \rightarrow \mu\mu$ decay

$H \rightarrow \mu \mu$: motivations, challenges, strategy

1. Motivations :

- Directly sensitive to $g_{H\mu\mu}$,
- $\mathcal{BR}_{H \to \mu\mu} \sim 2.2 \cdot 10^{-4}$: small but enhanced in some BSM scenarios,
- Clear signature : bump in $M_{\mu\mu}$ distribution.

Search for $H \rightarrow \mu\mu$ decay

$H \rightarrow \mu \mu$: motivations, challenges, strategy

1. Motivations :

- Directly sensitive to g_{Hµµ},
- $\mathcal{BR}_{H \to \mu\mu} \sim 2.2.10^{-4}$: small but enhanced in some BSM scenarios,
- Clear signature : bump in $M_{\mu\mu}$ distribution.

2. Challenges :

- Important background : $Z \rightarrow \mu\mu$ with $s/\sqrt{b} \sim 0.26$ (for 20 fb⁻¹),
- Key instrumental feature : $M_{\mu\mu}$ resolution.

Search for $H \rightarrow \mu\mu$ decay

$H \rightarrow \mu \mu$: motivations, challenges, strategy

1. Motivations :

- Directly sensitive to g_{Hµµ},
- $\mathcal{BR}_{H \to \mu\mu} \sim 2.2.10^{-4}$: small but enhanced in some BSM scenarios,
- Clear signature : bump in $M_{\mu\mu}$ distribution.

2. Challenges :

- Important background : $Z \rightarrow \mu\mu$ with $s/\sqrt{b} \sim 0.26$ (for 20 fb⁻¹),
- Key instrumental feature : $M_{\mu\mu}$ resolution.

3. Strategy :

- Look for a bump between $110 150 \text{ GeV } M_{\mu\mu}$
- Split events in 2 categories based on $M_{\mu\mu}$ resolution,
- Bkg/signal modelling : analytical shapes (fit in MC), unbinned fit

References : ATLAS-CONF-2013-010

Search for $H \rightarrow \mu\mu$ decay

Dedicated searches for *ttH* production

- 2 Search for H
 ightarrow au au decay
- **③** Search for $H \rightarrow \mu\mu$ decay

Direct access to couplings between Higgs and top quark field :

- Test proportionality between mass and couplings
- Higgs field properties at higher mass scale new physics might appear
- Constrain potential new physics appearing in loops

Direct access to couplings between Higgs and top quark field :

- Test proportionality between mass and couplings
- Higgs field properties at higher mass scale new physics might appear
- Constrain potential new physics appearing in loops

Direct access to couplings between Higgs and top quark field :

- Test proportionality between mass and couplings
- Higgs field properties at higher mass scale new physics might appear
- Constrain potential new physics appearing in loops

Extremely challenging :

- Low production rate : 0.4% of $\sigma_{tot}(H)$.
- Complex final state : leptons, 4 *b*-jets (combinatorics), E_T, potentially τs
- Large background systematics $(t\bar{t} + b\text{-jets}, t\bar{t} + V)$.

References : ATLAS-CONF-2012-135, CMS PAS HIG-13-019

Strategy adopted by ATLAS :

- Focus on $H \rightarrow bb$ decay and $t\bar{t}$ semi-leptonic decay
- Not presented : $ttH(\rightarrow \gamma\gamma)$
- Kinematic reconstruction and *b*-jets pairing : global fit event-by-event

Common to ATLAS & CMS : fit data in several categories to reduce systematics on $t\bar{t} + b$ -jets / $t\bar{t} + V$ backgrounds

Strategy adopted by ATLAS :

- Focus on $H \rightarrow bb$ decay and $t\bar{t}$ semi-leptonic decay
- Not presented : $ttH(\rightarrow \gamma\gamma)$
- Kinematic reconstruction and *b*-jets pairing : global fit event-by-event

Common to ATLAS & CMS : fit data in several categories to reduce systematics on $t\bar{t} + b$ -jets / $t\bar{t} + V$ backgrounds

Strategy adopted by CMS :

- Exploit $H \rightarrow bb$ and $H \rightarrow \tau \tau$ decays. Not presented : $ttH(\rightarrow \gamma \gamma)$.
- Make advantage of semi-leptonic and di-leptonic decays of *t* system
- Combine b-tagging, *τ*ID, *b*-jet pairing in a BDT for bkg/sig separation
- *Not presented* : $ttH(\rightarrow \gamma\gamma)$ and its full combination with $ttH(\rightarrow bb/\tau\tau)$

Strategy adopted by CMS :

- Exploit $H \rightarrow bb$ and $H \rightarrow \tau \tau$ decays. Not presented : $ttH(\rightarrow \gamma \gamma)$.
- Make advantage of semi-leptonic and di-leptonic decays of *t* system
- Combine b-tagging, *τ*ID, *b*-jet pairing in a BDT for bkg/sig separation
- *Not presented* : $ttH(\rightarrow \gamma\gamma)$ and its full combination with $ttH(\rightarrow bb/\tau\tau)$

Dedicated searches for *ttH* production

Conclusions

Higgs fermonic decays are experimentally challenging : low production rate, high background, complicated final state

Conclusions

Higgs fermonic decays are experimentally challenging : low production rate, high background, complicated final state

Crucial searches to fully understand the sector of the new boson :

- Direct measurement of coupling to fermionic fields
- Crucial for the new boson properties measurement (talk by E. Pianori)

Conclusions

Higgs fermonic decays are experimentally challenging : low production rate, high background, complicated final state

Crucial searches to fully understand the sector of the new boson :

- Direct measurement of coupling to fermionic fields
- Crucial for the new boson properties measurement (talk by E. Pianori)

Wide search program at LHC and first exciting results :

- Golden channels : VH($\rightarrow bb$) & GGF/VBF H $\rightarrow \tau\tau$
- Secondary channels : ttH, VH($\rightarrow \tau \tau$), VBF H $\rightarrow bb$
- Reach SM sensitivity in the key channels (3.4 σ excess in $\tau \tau + bb$ at CMS), and more to come with refined analysis and/or more data

Conclusions

Higgs fermonic decays are experimentally challenging : low production rate, high background, complicated final state

Crucial searches to fully understand the sector of the new boson :

- Direct measurement of coupling to fermionic fields
- Crucial for the new boson properties measurement (talk by E. Pianori)

Wide search program at LHC and first exciting results :

- Golden channels : VH($\rightarrow bb$) & GGF/VBF H $\rightarrow \tau\tau$
- Secondary channels : ttH, VH($\rightarrow \tau \tau$), VBF H $\rightarrow bb$
- Reach SM sensitivity in the key channels (3.4 σ excess in $\tau \tau + bb$ at CMS), and more to come with refined analysis and/or more data

Essential step torward new physics discovery :

- *ttH* and GGF offer a unique way of probing new physics in Higgs sector
- Sensitivity to $\mathcal{BR}(H \to inv)$ is dominated by $\Gamma(H \to bb)$ uncertainty