Electroweak measurements from W, Z and photon final states

Hang Yin

Fermi National Accelerator Laboratory

Physics in Collisions 2013, Beijing Sept. 4th, 2013

Global electroweak fit

✓ Latest version of Gfitter results (May 13rd):

- Latest theory calculations
- Legacy precision measurement from LEP/SLD
- With latest world average W boson mass
- Direct top mass measurements from Tevatron
- Higgs boson mass from LHC
- ≻
- ✓ Pull values for different observables:
 - > No value exceeds 2.5 σ
 - Largest deviation from the FB asymmetry
 - Good agreement between standard model prediction and data

> SLD A_{FB}^{LR} vs. LEP A_{FB}^{b} : > 3 σ

9/4/2013

Hang Yin, PIC 2013 Conference arXiv:1209.2716[hep-ph]

Motivations

- ➢ Test standard model (SM)
 - Cross section/ differential cross section: high order theoretic predictions
 - PDFs: constrain PDFs
- >Improve precision on parameters
 - **W** boson mass
 - Weak mixing angle (Z forward backward asymmetry)

CROSS SECTION MEASUREMENTS

9/4/2013

W/Z total Cross sections

CMS: JHEP 1110 (2011) 132 ATLAS: JHEP 1012 (2010) 060 CMS: CMS-PAS-SMP-12-011

Cross section times branching ratio, compared with NNLO theory predictions.

9/4/2013

✓ 18 pb⁻¹ data (low-pileup) collected at the beginning of 8 TeV run $p_{\tau}^{e} > 25 \text{ GeV}, |\eta| < 2.5$ $p_{\tau}^{\mu} > 25 \text{ GeV}, |\eta| < 2.1$

CMS-PAS-SMP-12-011

W and Z cross section at 8 TeV

NNLO theoretical predictions: FEWZ + MSTW2008NNLO

CMS-PAS-SMP-12-011

9/4/2013

W/Z cross section

CMS

- W boson versus Z boson cross section
- W⁺ versus W⁻ cross section

CMS-PAS-SMP-12-011

9/4/2013

Cross section ratios W/Z, W^+/W^-

Lepton universality

World average R_W=1.017 +/- 0.019 R_Z=0.9991+/-0.0024

$$R_W = \frac{\sigma_W^e}{\sigma_W^{\mu}} = \frac{\text{Br}(W \to e\nu)}{\text{Br}(W \to \mu\nu)}$$

= 1.006 ± 0.004(sta) ± 0.006(unc) ± 0.022(cor)
= 1.006 ± 0.024.

$$R_{Z} = \frac{\sigma_{Z}^{e}}{\sigma_{Z}^{\mu}} = \frac{\text{Br}(Z \to ee)}{\text{Br}(Z \to \mu \mu)}$$

= 1.018 ± 0.014(sta) ± 0.016(unc) ± 0.028(cor)
= 1.018 ± 0.031.

9/4/2013

Differential Drell-Yan (DY) cross section

9/4/2013

Hang Yin, PIC 2013 Conference

11

Double differential DY cross section

CMS PAS SMP-13-003

- Mass and rapidity double differential cross section
- Rapidity distribution is sensitive to PDFs
- High order/FSR effects are particularly important at low mass

Low mass region Z peak region

High mass region

Hang Yin, PIC 2013 Conference

9/4/2013

Very forward results from LHCb

J. High Energy Phys. 02 (2013) 106

J. High Energy Phys. 01 (2013) 111

J. High Energy Phys. 06 (2012) 058

9/4/2013

Differential cross section from LHCb

BOSON TRANSVERSE MOMENTUM

$Z p_{\tau}$ measurement

✓ Motivation:

- Test the vector boson production formalism
- \blacktriangleright Reduce theory uncertainty of the precision W mass measurement
- Reduce uncertainties on searches with backgrounds from high p_{τ} boson
- $\checkmark Z \text{ boson } p_{\tau}$: Comes from initial QCD radiation

Tevatron results

- ✓ Low p_T region: dominated by soft and collinear gluon emission, limitation of standard perturbative calculation
 - Use QCD resummation methods
- ✓ High p_{τ} region: dominated by single parton emission
 - Use Fixed-order perturbative calculations

Due to the poor resolution on $p_{\tau}(Z)$, the measurements are limited Phy. Rev. D 86, 052010 (2012) by systematic uncertainties.

LHC results

Low pileup run 18.4 pb⁻¹

Dimuon channel: $p_T > 20 \text{ GeV}$, $|\eta| < 2.1$, 60-120 GeV

$Z p_T$ up to 600 GeV

RESBOS describes the whole spectrum well

CMS-PAS-SMP-12-025

9/4/2013

A Novel technique

9/4/2013

LHCb: J. High Energy Phys. 02 (2013) 106

20

1

سليسليسلينيات

φ*

W BOSON W-, W+ 2 boson The W BOSON is a W- sid messenger particle which communicates the weak force. Unlike the photon and gluon bosons, it has a mass. Like the Z boson, it is one of the most short-lived particles known, with a mere 10-25 second lifetime. It can be negatively charged (W-) or positively charged (W+). Luckily you can have both, as the toy is double-sided. Wool felt with gravel fill 2-SIDED W+ side for maximum mass. \$16.49 PLUS SHIPPING LIGHT HEAVY [≵]PARTICLEZ00

PROPERTIES MEASUREMENTS

W boson mass: motivation

- ✓ W mass is a key parameter in the Standard Model (SM):
 - SM does not predict the value of the W mass, but it predicts this relation between the W mass and other experimental observables

$$M_{W} = \sqrt{\frac{\pi \alpha}{\sqrt{2} G_{F}}} \frac{1}{\sin \theta_{W} \sqrt{1 - \Delta r}}$$

► Radiative corrections (Δr) depend on M_t as ~ M_t^2 and on M_H as ~log M_H . They include diagrams like these:

✓ W mass can help to determine if the observed boson is consistent with SM Higgs or not

W boson mass

The mass of the new boson discovered by ATLAS+CMS is inside this blue band.

Comparison between indirect constraints on the SM Higgs boson and direct measurements of mass of boson discovered by ATLAS and CMS.

Consistent at the 1.3σ level.

9/4/2013

W boson mass

Future:

D0: with full data set, include forward region to reduce PDF uncertainty
→15 MeV

CDF: with full data set→10 MeV (include improvement in PDFs)

LHC: →10 MeV to 5 MeV, ultimately Boson P_T measurement, rapidity, W charge asymmetry

arXiv:1307.7627 [hep-ex] Accepted by Phys. Rev. D

9/4/2013

Lepton asymmetry vs. W asymmetry

- ✓ W charge asymmetry is sensitive to Patron Distribution Functions (PDFs)
 - Tevatron is ppbar collider: u quark tends to carry higher momentum than d quark
 - LHC is pp collider: proton has two valence u quarks and one valence d quark. More W⁺ than W⁻
- ✓ Lepton asymmetry comes from a convolution of *W* asymmetry and the *W V*-A decay: A(y) ⊗ (V-A)

Tevatron results

Phy. Rev. Lett. 102, 181801 (2009)

More results with full data set (10 fb⁻¹) will coming out soon!

LHC results

Weak mixing angle

✓ Fundamental parameter
 in the electroweak theory
 ✓ LEP A_{FB}^b and SLD A_{FB}^{LR} :
 off by 3σ in opposite direction

9/4/2013

Forward-backward asymmetry

Forward-backward asymmetry : $A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}}$

$$\sigma_F = \int_0^{+1} \frac{d\sigma}{d\cos\theta^*} d\cos\theta^*, \qquad \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta^*} d\cos\theta^*$$

9/4/2013

Tevatron results

9/4/2013

LHC results

9/4/2013

Summary of weak mixing angle

9/4/2013

Summary

✓ Precision measurements on single W and Z bosons provide stringent tests of the SM

Good consistency between SM and data

- Provide more information for PDF fitting
- High order corrections (NLO, NNLO), pQCD
- Precision measurements on the SM input parameters (W boson mass, weak mixing angle)

✓ More precision electroweak results with larger dataset from both LHC and Tevatron coming soon

W BOSON

The W BOSON is a

messenger particle which communicates the weak force. Unlike the photon and gluon bosons, it has a mass. Like the Z boson, it is one of the most short-lived particles known, with a mere 10^{-25} second lifetime. It can be negatively charged (W-) or positively charged (W+). Luckily you can have both, as the toy is double-sided.

Wool felt with gravel fill for maximum mass.

\$16.49 PLUS SHIPPING

BACKUP

W polarization

✓ The left-handed, right-handed and longitudinal polarization fractions are measured using both electron and muon channels

9/4/2013

τ polarization

- ✓ Using W→ τν
- ✓ W⁻ coupled to left-handed τ
- \checkmark W⁺ coupled to right-handed τ

$$P_{\tau} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

Eur. Phys. J. C 72 (2012) 2062

$$\frac{E_{\mathrm{T}}^{\pi^{-}} - E_{\mathrm{T}}^{\pi^{0}}}{p_{\mathrm{T}}} \approx 2\frac{p_{\mathrm{T}}^{\mathrm{trk}}}{p_{\mathrm{T}}} - 1 = \Upsilon.$$

 $P_{\tau} = -1.06 \pm 0.04 \ (stat) \stackrel{+0.05}{_{-0.07}} \ (syst).$

Collins-Soper frame

Tevatron compared with LHC

X-Q² reach

x = momentum fraction of parton $Q^2 =$ square of momentum transfer

- W asymmetry measurement: $Q^2 \approx M_W^2$, $x = \frac{M_W}{\sqrt{s}} e^{\pm W}$
- > This measurement:

 $|y_w| < 3.2 \implies 0.002 < x < 1.0$

Previous measurements:

 $|y_W| < 2.5 \implies 0.003 < x < 0.5$

- Complementary to central and forward jet measurements at D0 and CDF
- CTEQ and MRST groups
 - Well constrained PDFs are essential for many measurements and searches at hadron colliders
 - ✓ Expect Tevatron Run II ∆W_M <15 MeV, currently 11 MeV due to PDFs

9/4/2013

With known incoming quark direction.

In the forward region, the valence quark has higher momentum.

