Forward Physics and Soft QCD results
 @Physics in Collision, IHEP Beijing September3-7 2013

INFN and Università degli Studi di Perugia
on behalf of ALICE, ATLAS and CMS collaborations

LHC

Motivations

Soft and Forward QCD measurements cross sections and diffraction particles (flow, shape, id and correlations)

The role played by Multiple Parton Interactions

LHC
 Motivations

Soft and Forward QCD measurements cross sections and diffraction particles (flow, shape, id and correlations)

The role played by Multiple Parton Interactions

Why interested in QCD while we look for new phenomena ?

LHC physics -> mainly large cross-section phenomena (QCD)
-> used for "Physics" and Detectors commissioning
QCD is a successful theory, heavily tested in past experiment and predictive for higher energy. Needed to be verified at any new energy

Asymptotic freedom, factorization and evolution are the instruments we use to analyze QCD processes at colliders

Perturbative QCD is an excellent description of the strong interaction at large Q^{2} (in an ideal asymptotic freedom regime) but it is also needed to understand low Q^{2} (soft phenomena), in the non-perturbative regime, surrounding all LHC production

+ LHC bring non-perturbative phenomena to relatively large $\mathrm{Qs}^{2}\left(\sim 1 \mathrm{GeV}^{2}\right)$, large enough to be studied experimentally
+ Experimental guidance is of interest for improving phenomenological application of QCD to the soft sector

LHC parton kinematics

LHC is a proton-proton collider (up to 14 TeV) mainly gluon-gluon interactions

Huge phase space for the final state:
high jet multiplicity expected
LHC extends the kinematical region from previous experiment (new info for proton structure and interaction dynamics)
10^{34} luminosity -> high pile-up
Pile-up is mainly generic p-p interactions -> soft interactions

A robust modeling activity is needed from Low and High pT phenomena:

+ strong dynamics at TeV (pQCD, PDFs, α_{s}, new physics...) ${ }^{10^{2}}$ + soft dynamics (Multiplicities, Underlying Event, nonperturbative effects, Multiple Interactions)

why?

+ optimal interaction description
+ background definition
+ clear signal for any old and new physics

Why modeling is so

 important?+ Monte Carlo models prove our ignorance
+ Our knowledge is $\sqrt{ }$ S-dependent: predictive models at SpS or Tevatron, diverge if extrapolated to higher energy
+ In addition models depend on observables (is there a universal tune?)
+ Lot of work is ongoing

How?

+ experimentally, for instance, from basic observables based on soft and hard reactions
+ new calculations and tools
like Rivet/Professor like Rivet/Professor

Structure of the p-p interaction

Main Interaction

Radiation (ISR/FSR)

Jet
Fragmentation/
Hadronization
Mutiple Interactions (MPI)

Beam Remnant

Phenomenological framework

The goal is to test SM (in)consistency For each process expected at LHC:

Phenomenological framework

How understand QCD processes ?
We need accurate normalization and kinematical distributions
we still can use tools from PQCD given infrared-safe observables and factorizable quantities (where IR divergences can be reabsorbed in a np factor)
how ? factorization theorem
high interaction energy -> one can resolve partons from the sea -> pQCD

$$
\begin{gathered}
\frac{d \sigma}{d X}=\sum_{j, k \hat{X}} \int_{j} f_{j}\left(x_{1}, Q_{i}\right) f_{k}\left(x_{2}, Q_{i}\right) \frac{d \hat{\sigma}_{j k}\left(Q_{i}, Q_{f}\right)}{d \hat{X}} F\left(\hat{X} \rightarrow X ; Q_{i}, Q_{f}\right) \\
\end{gathered}
$$

PDF (parton distribution functions):
Sum of all initial states leading, at the
Transition from the partonic final state to the final state hadrons

Q-scale, to $\mathrm{pj}_{\mathrm{j}}=\mathrm{xP}$ (proton)
(hadronization, fragmentation, jet definition...)

Phenomenological framework

low-x and forward physics is a perfect benchmark to investigate IR physics and test perturbative and non-perturbative models
I. Where is the energy going? Note only linearized Sphericity is \mathbb{R} sofe

Sum(pT) densities, event shapes, mini-jet rates, ctrl\&fwd energy
flow, energy correlations... \approx sensitive to pQCD + pMPI
2. How many tracks is it divided onto?
$\mathrm{N}_{\text {tracks, }}$, $\mathrm{AN}_{\text {tracks }} / \mathrm{dp} \mathrm{T}_{\mathrm{T}}$ Associated track densities, track correlations...
\approx sensitive to hadronization + soft MPI

Experimental framework LHC

(generated 2013-01-29 18:28 including fill 3453)

Relative beam sizes around IP1 (Atlas) in collision

Experimental framework

ALICE

ATLAS

LHC

Motivations
Soft and Forward QCD measurements cross sections and diffraction particles (flow, shape, id and correlations)

The role played by Multiple Parton Interactions

Total pp cross section

indirect (PileUp distributions / optical theorem) or direct ways (Minimum Bias Trigger)

Total pp cross section

$\sigma_{\text {TOT }}(S) \propto S^{-1 / 2}$ (Regge)
$\sigma_{\text {тОт }}(S) \propto S^{\varepsilon}+\ln (S)+\ln ^{2}(s)$
(Pomeron exchange)

Total pp cross section

$\sigma_{\text {TOT }}(S)=c+S^{-1 / 2}+\gamma^{1 n^{2}(s)}$
(best fit from COMPETE coll.)

Total pp cross section

```
\(\sigma_{\text {TOT }}(8 \mathrm{TeV})^{\text {TOTEM (OT) }}=101.7 \mp 2.9 \mathrm{mb}\)
\(\sigma_{\text {TOT }}(8 \mathrm{TeV})^{\text {COMEPTE }}=101 \mp 5 \mathrm{mb}\) [confirms \(\sim \ln ^{2}(\mathrm{~s})\) ]
    \(\left(\sigma_{\text {TOT }}(8 \mathrm{TeV})^{2 \text {-pomeron }}=125 \mp 5 \mathrm{mb}\right)\)
\(\sigma_{\text {INELASTIC }}\left(\xi>5 * 10^{-6}\right)^{\text {ALICE }}=62.1 \mp 1.0\) (syst) \(\mp 2.2\) (lumi) mb
\(\sigma_{\text {INELASTIC }}\left(\xi>5 * 10^{-6}\right)^{\text {ATLAS }}=60.3 \mp 0.05\) (stat) \(\mp 0.5\) (syst) \(\mp 2.1\) (lumi) mb
\(\sigma_{\text {INELASTIC }}\left(\xi>5 * 10^{-6}\right)^{\mathrm{CMS}}=60.2 \mp 0.2(\mathrm{stat}) \mp 1.1(\mathrm{syst}) \mp 2.4\) (lumi) mb
```


+ PHOJET and SIBYLL overestimate σ inel
+ EPOS, QGSJET II-03, PYTHIA 6, and PYTHIA 8 about 10% above the data
+ QGSJET 01, QGSJET II-04 agree well with the measurements
+ PYTHIA 8+MBR agrees well with the track-based measurements, but overestimates the prediction for σ inel for $\xi>5 \times 10^{-6}$

All models agree broadly with the relative dependence of the cross section on the criteria used to define the final states.

Experimental results well in agreement within each others

Total pp cross section - GAPs cross section

CMS Preliminary, $\sqrt{s}=7 \mathrm{TeV}$, $\mathrm{L}=20.3 \mu \mathrm{~b}^{-1}$

The size of the pseudorapidity gap is directly related to the diffractively dissociated system (in the whole mass range) - larger GAP -> higher contribution
$\Delta \eta F=$ largest empty pseudorapidity interval, from edge of detector non-diffractive events dominate at small gaps diffractive plateau observed for large gaps

Total pp cross section - Diffraction

Experimentally is not possible to distinguish pomeron exchange from secondary-reggeons, the separation of these processes is model dependent

Experimental measurements based on large gaps, compared with different model (triple reggeon, QGSJET II, N=4SYM...)

Good agreement on a wide energy range with the model based on Gribov's Regge calculus (Eur. Phys. J. C67 (2010) 397) - continuous black line

Almost constant SD fraction with energy $\sigma_{S D} / \sigma_{\text {Inel }} \simeq 0.2$
[consistency: good agreement at 900 GeV with previous measurements]

LHC

Motivations

Soft and Forward QCD measurements cross sections and diffraction particles (flow, shape, id and correlations)

The role played by Multiple Parton Interactions

Pseudorapidity and pT distribution

Most event generators are not able to describe simultaneously both energy evolution in $\rho(0)$ and < $p_{T}>$

Why do these quantities rise and why faster than $\ln (\mathrm{s})$?

Pseudorapidity and pT distribution

QCD radiation violates Feynman scaling at high energies

But, even when assuming Feynman scaling, the possibility of creating more strings in MPI gives rise of $\rho(0)$ stronger than $\ln (\mathrm{s})$
< $p_{T}>$ is energy independent for soft processes
for hard scale the rise is due to

- production of jets in hard scatters
- and MPI

Z-generation pythia, tuned on MPI observables, does the best job in central region but fails forward

Transverse Energy Flow

charged and neutral components included (using the full acceptance of ATLAS calorimeter) important complementary measurement to charged particle distributions

MCs underestimate the forward activity

sensitivity to diffractive component is small
sensitivity to choice of proton PDFs and Underlying Event tune is observed

Event Shapes

prevalence of spherical events with a soft pTlead selection

Z-generation Pythia Tune provide the best description
all MCs fail in reproducing shapes at high pTsum (same for high multiplicity events)

Particle production and identification

π / K Separation
[Comparison of different PID methods

Particle identification is performed in different ways, depending on the peculiarity of the single detectors, estimators are build based on $\mathrm{dE} / \mathrm{dx}$, TOF, Secondary Vertex...

SILICON
TARCKER

TIS+TPC+HMPID+TRD

Particle production - ratios

Momentum dependence

Comparison with pythia Perugia tunes shows nice agreement with kaons and overestimation for pions Particle ratios plots generally challenge MC

$\sqrt{ } \mathbf{S}$ and multiplicity dependence:

K / π and p / π are flat with values 0.13 and $0.06-0.07$
Opposite charge ratios - Flat, around $0.97-0.98$ for pions; compatible with I for kaons - not shown here

2-particles correlations

SIGNAL:

correlated and uncorrelated
pairs from same event
$S(\Delta \eta, \Delta \phi)=\frac{1}{N(N-1)} \frac{d^{2} N}{d \Delta \eta \Delta \phi}$

BACKGROUND:

uncorrelated pairs
from 2 events mixing

$$
B(\Delta \eta, \Delta \phi)=\frac{1}{N^{2}} \frac{d^{2} N}{d \Delta \eta \Delta \phi}
$$

$\Delta \eta=\eta_{1}-\eta_{2}$
$\Delta \phi=\phi_{1}-\phi_{2}$

2-particles correlations are defined as

$$
\left.R(\Delta \eta, \Delta \phi)=\left((N-1) \left\lvert\, \frac{S_{N}(\Delta \eta, \Delta \phi)}{B_{N}(\Delta \eta, \Delta \phi)}-1\right.\right)\right)_{1}
$$

CMS 7TeV MinBlas, $\mathrm{p}_{\mathrm{T}}>\mathbf{0 . 1} \mathbf{G e V} / \mathrm{c}$

Gaussian ridge @ $|\Delta \eta|<2$ from cluster
fragmentation (shortrange)

Near-side peak @ $\Delta \eta, \Delta \Phi \sim 0$ from near-side "jet"/higher pT clusters (+BE)

Broad ridge @ $\Delta \Phi \sim \pi$ from Away-side "jet"/ lower pT clusters
$\operatorname{Cos}(\Delta \Phi)$ modulation from Momentum conservation

CMS $\mathbf{7 T e V}$ MinBias, $\mathrm{p}_{\mathrm{T}}>\mathbf{0 . 1} \mathbf{G e V} / \mathrm{c}$

Gaussian ridge @ $|\Delta \eta|<2$ from cluster fragmentation (shortrange)

Near-side peak @ $\Delta \eta, \Delta \Phi \sim 0$ from near-side "jet"/higher pT clusters (+BE)

Broad ridge @ $\Delta \Phi \sim \pi$ from Away-side "jet"/ lower pT clusters
$\operatorname{Cos}(\Delta \Phi)$ modulation from Momentum conservation

CMS 7 TeV MinBias, $\mathrm{p}_{\mathrm{T}}>\mathbf{> 0 . 1} \mathbf{G e V} / \mathrm{c}$

Gaussian ridge @ $|\Delta \eta|<2$ from cluster fragmentation (shortrange)

Near-side peak @ $\Delta \eta, \Delta \Phi \sim 0$ from near-side "jet"/higher pT clusters (+BE)

Broad ridge @ $\triangle \Phi \sim \pi$ from Away-side "jet"/ lower pT clusters
$\operatorname{Cos}(\Delta \Phi)$ modulation from Momentum conservation

CMS $\mathbf{7 T e V}$ MinBias, $\mathbf{p}_{\mathrm{T}}>\mathbf{> 0 . 1} \mathbf{G e V} / \mathrm{c}$

Gaussian ridge @ $|\Delta \eta|<2$ from cluster fragmentation (shortrange)

Near-side peak @ $\Delta \eta, \Delta \Phi \sim 0$ from near-side "jet"/higher pT clusters (+BE)

Broad ridge @ $\Delta \Phi \sim \pi$ from Away-side "jet"/ lower pT clusters
$\operatorname{Cos}(\Delta \Phi)$ modulation from Momentum conservation

2-particles correlations

Long range:
Project $2<|\Delta \eta|<4.8$ onto $\Delta \varphi$:
(d) $\mathrm{N}>110,1 . \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

Ridge most pronounced for high multiplicity events and at $\mathrm{I}<\mathrm{P}_{\mathrm{T}}<\mathbf{3} \mathbf{~ G e V}$.

No ridge seen in tested MC models (Pythia 8, Pythia6, Herwig++, etc.)
Several interpretations proposed for this HI-like effect in Pp interactions. Possible role of Multiple Parton Interactions [S. Alderweireldt, P.Mechelen arXiv:I 203.2048]

Increasing $\mathbf{P}_{\mathbf{T}}$

JHEP I009:09I,20IO

correlations - the structure of QCD field

2 particle correlations

Azimuthal ordering of charged hadrons

MC models employing the standard Lund string fragmentation roughly reproduce the data

Overestimation of correlations in the low-pT depleted sample (maximally sensitive to UE)

Indication of a fragmenting helixlike ordered gluon chains ?

Overall shape description but difficult to reproduce the strength of the correlations (P6- AMBT2B and P8-4C provide the best description)

Phenomenology of soft particle production needs further improvement (tuning of diffraction, hadronization, MPl's or beyond....)

charged energy in/out track-jet definition

good agreement with Pythia prediction (especially Z-generation tunes) for charged inside and outside jet
underlying activity is underestimated by HERWIG (more softer particles than Pythia)
for high-multiplicity events, PYTHIA predicts higher jet rates and harder PT spectra whereas HERWIG shows the opposite trend

LHC

Motivations
Soft and Forward QCD measurements cross sections and diffraction particles (flow, shape, id and correlations)

Multiple Parton Interactions

soft pT

+ multiplicities
+ <pT> energy evolution
+ energy flow and shapes
+ scaling violation
+ correlations

hard $\mathbf{p T}$

+ background processes to new physics searches
+ proton structure and understanding the dynamics of the hadronic interaction
strong indication of the role played by MPI

LHC research program:
soft MPI -> Underlying Event (low luminosity)
hard MPI (not discussed here) direct measurement (high luminosity)

Underlying Event at CMS

Traditional approach (R. Field)
Leading Track or Leading Track-Jet define a direction in the phi plane
Track or Track-jet pT provide an energy scale

Observables are built from tracks:

$$
\mathbf{d}^{2} \mathbf{N}_{\mathrm{ch}} / \mathbf{d \eta d \phi}=
$$ multiplicity density

$\mathbf{d}^{2} \sum \mathbf{p}_{\mathrm{T}} / \mathrm{d} \mathrm{\eta d} \mathrm{\phi}=$ energy density

Leading Track Jet

900 GeV - Eur.Phys.J.C70:555-572,20IO 7 TeV - JHEP09 (20II) 109

Observables can be defined using $\Delta \varphi$ correlations relative to main activity Transverse region is expected to be sensitive to the UE

The transverse region - jet events

Fast rise for $\mathrm{pT}<8(4) \mathrm{GeV} / \mathrm{c}$ due to the increase of the MPI activity

Plateau region with ~constant charged density and slow increase of $\mathrm{p} T$ _sum in a sturation regime Increase of the activity with $\sqrt{ } \mathrm{s}$ corroborates MPI model...

The transverse region - jet events

soft

periferal collision
~independent on $\sqrt{ }$ s
semi-soft
mix of central and peripheral collisions (increasing behaviour)

hard

mainly central collisions.

The ratio reflects the ratio of the sizes of the central, high parton density regions for the two $\sqrt{ }$ s domains

The transverse region - jet events cumulative in the transverse region

Strong growth of the activity observed for a fixed event energy scale ($\mathbf{3} \mathbf{G e V}$) + hard component in the UE, with P_{T} spectrum extending to 10 GeV

Several PYTHIA tunes have been compared
(Models differ in the implementation of radiation, fragmentation, color reconnection and multiple parton interactions, in particular in the $\sqrt{ } s$ dependence of the amount of MPI activity)

+ Very good descriptions of most distributions at $\sqrt{ } s=7 \mathrm{TeV}$ and of the $\sqrt{ } \mathrm{s}$ dependence from 0.9 to 7 TeV is provided by the ZI tune. + Tunes adopting CTEQ6L may need a smoother increase of the pT-cut-off with increasing energy with respect to CTEQ5L tunes.

The transverse region - jet events

Increase in jet radius

- DATA $2010 \sqrt{s}=7 \mathrm{TeV}$
......... PYTHIA (Z1)
.-..... Pythia (AUET2B)
...." HERWIG++ (UE7-2)
---w-" PYTHIA (Perugia2011)
.-.-s. PYthia (Perugia2011 NOCR)
--*- PYTHIA 8.145 (4C)

$$
\begin{aligned}
& p_{\mathrm{T}}^{\text {track }} \geq 0.5 \mathrm{GeV} \quad\left|\eta^{\text {track }}\right| \leq 1.5 \\
& \text { anti- } k_{t} \text { jets: }\left|\eta^{\text {jet }}\right| \leq 1.5 \quad \int L \mathrm{dt}=800 \mu \mathrm{~b}^{-1}
\end{aligned}
$$

Anti-kT jets, radius: 0.2 to I .0 Study UE in regions transverse to jets, as a function of $P_{T}{ }^{\text {jet }}$
both the multiplicity and the scalar sum of the transverse momenta vary significantly with R while the average charged-particle transverse momentum depends minimally

The transverse region - Drell-Yan events

+ Hard energy scale ($81<\mathrm{M}_{\mu \mu}<101 \mathrm{GeV} / \mathbf{c}^{2}$): no sharply rising part only the slow growth due to the ISR
+ For $\mathrm{p}_{\mathrm{T}}{ }^{\mu \mu}$ and leading p_{T} leading jet $>10 \mathrm{GeV} / \mathrm{c}$ DY events have a smaller particle density with a harder p_{T} due to the presence of only ISR initiated by quarks
+ Hadronic events have both initial and final state radiation predominantly initiated by gluons.

The transverse region - identified particles

Same pattern observed for standard UE measurement, compatible with the IP interpretation PYTHIA underestimate the data by $15-30 \%$ for K_{s} mesons and by about 50% for Λ baryons Deficit similar to that observed for the inclusive strange particle production in PP collisions

Transverse activity interpretation

M. Strikman et al. - "Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC"

gluon transverse size decreases with increasing x
transverse size of large \times partons is smaller than the transverse range of soft interactions
helpful to explain:

+ general UE feature
$+\left\langle\rho^{2}\right\rangle_{g}<\left\langle\rho^{2}\right\rangle_{q}$
UE in DY < UE in Jets

2 scale picture

Energy Flow in the Forward Region

measurements relies on the energy flow in the hadron forward calorimeter $(3.15<\eta<4.9)$ in the presence of events triggered by a more central activity (MinBias, di-
 jets...)

Test of central-forward correlation

$$
\begin{array}{ll}
E_{\text {FLOW }}(\text { dijet })=\frac{1}{N_{\text {djeet }}} \frac{\Delta E}{\Delta \eta}(\text { dijet }) & \text { Studied Distributions } \\
E_{\text {FLOW }}(\text { minbias })=\frac{1}{N_{\text {minbias }}} \frac{\Delta E}{\Delta \eta}(\text { minbias }) &
\end{array}
$$

Two different $\sqrt{ }$ s studied: 0.9 and 7 TeV
Di-jet sample is defined by $\mathrm{pT}>8 \mathrm{GeV}$ at $0.9 \mathrm{TeV}(20 \mathrm{GeV}$ at 7 TeV$)$ and $|\eta|<2.5$ and $|\Delta \varphi(j 1, j 2)-\pi|<1$

MinBias: at least one charged particle in both forward and backward regions (NSD)

Energy Flow in the Forward Region

Cascade Ktfactorization based MC, without MPI

Compared to other UE measurements, slightly different conclusions for what concerns the agreement of the MC models \& tunes

Energy Flow increases with the scale (MB vs di-jet) \& $\sqrt{ } \mathrm{s}$: Effect attributed mainly to MPI

Pattern very similar with respect to the traditional UE measurement from both a quantitative and qualitative point of view

Energy flow also increases with η (close to the beam remnant)

Energy Flow in the Very Forward Region

Energy deposited in CASTOR ($5.1<\eta<6.6$) for events with a charged particle jet in the central region $|n|<2$, as a function of charged particle transverse momentum pT (normalized to the average energy in inclusive events)
$>$ pT evolution of observable changes trend with $\sqrt{ } \mathrm{s}$ (decreasing at low $\sqrt{ } \mathrm{s}$, increasing at high $\sqrt{ } \mathrm{s}$) $>$ Post LHC models adopting pT-ordered showers are favored by data (agreement within 5-10\%) > Good agreement also for EPOS, QGSJETOI, QGSJETII, SIBYLL 2.1 (within 20\%)

Many, many, many additional results and details can be found in:

ALICE

https://twiki.cern.ch/twiki/bin/view/ALICEpublic/ALICEPublicResults

ATLAS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
StandardModelPublicResults

CMS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Conclusions

QCD is a successful theory, tested in past experiments and largely predictive Next LHC run, with increased pile-up, will be challenging for precision QCD

Impressive number of analyses related to soft QCD have been performed on collected data and are still ongoing on 8 TeV samples:

+ Large agreement and complementarity between the experiments
+ Important constraints for perturbative (and non-) models
Description of cross section and diffraction processes is increased, in both genuine-Reggeon and Pythia-MBR approach. Hadronization and fragmentation have been deeply tested.

Several indications from "solid" Minimum Bias observables tend to identify a strategic role played by the Multiple Parton Interactions into the dynamics of the hadronic interactions Well-known (multiplicities, scaling, pT evolution, shapes...) and unexpected phenomena (correlations, multi-hard scattering...) seems to be intimately related to Multiple Interactions

Even if there are still difficulties (e.g. in describing high-multiplicity event activity) actual models (taking into account p --ordered shower, color reconnection, MPI rescattering, MBR, helixlike fragmentation...) give a good description for the LHC physics

