

Vector Boson Pair Production at LHC and Tevatron

Jian Wang (Univ. Libre de Bruxelles) On behalf of ATLAS/CMS/CDF/D0 collaborations

Introduction

- The study of diboson production provides an important test of the Standard Model at TeV energy scale
- Sensitive to self-interaction among vector bosons via triple gauge couplings (TGC)
 - Neutral TGC is forbidden at tree level in SM
 - New physics would induce changes in TGC
- Irreducible background to Higgs boson
 - See J. Branson's H->VV talk tomorrow

Data and Analysis

- Tevatron: proton-antiproton collisions at 1.96 TeV, up to 9.8 fb⁻¹
- LHC: proton-proton collisions at 7, 8 TeV up to 5, 20 fb⁻¹
- W, Z decay modes
 - W->Iv, Z->II: leptons are isolated; experimentally clean
 - Neutrino inferred by imbalance of transverse energy: Missing ET
 - W/Z->jj, Z->vv: higher branching fractions; larger backgrounds
- Theoretical predictions on diboson cross sections: NLO QCD (e.g. MCFM)
- Focusing on new results in the past year

Cross section measurements

In following slides: Wy, Zy, WW, WZ, ZZ

 $WY \rightarrow VY, ZY \rightarrow VY$

- Lepton+Missing ET or dilepton
- Photon pT > 15 GeV
- Good S/B
- Main backgrounds: W+jets, Z+jets (jet faking photon)

arXiv:1308.6832 (submitted to PRD) Phys. Rev. D 87, 112003 (2013)

Wednesday, September 4, 2013

CMS-PAS-SMP-12-020 Phys. Rev. D 87, 112003 (2013)

- Missing ET + isolated photon
- Pros: larger branching fraction and acceptance
- Cons: larger backgrounds; Blind to low pT
- Main Backgrounds
 - W->ev, Z(vv)+jets, QCD
- Photon timing is used to reduce non-collision backgrounds

Phys. Rev. D 87, 112001 (2013)

WW->|v|'v'

- Two opposite sign leptons, pT > 25/20 GeV; significant Missing ET
- Main backgrounds
 - top, Z+jets
- Systematics dominate
 - Jet veto
 - Background estimation

7 TeV 4.6 fb⁻¹

 $51.9 \pm 2.0(stat) \pm 3.9(sys) \pm 2.0(lumi)$

Theoretical 44.7^{+2.1}-1.9 pb

arXiv:1306.1126 (submitted to EPJC) Phys. Lett. B 721 (2013) 190–211

WW->|v|'v'

Eur. Phys. J. C (2012) 72:2173 ATLAS-CONF-2013-021 Phys. Rev. D 86 (2012) 031104 Phys. Rev. D 85 (2012) 112005

- Exactly 3 leptons, a pair of which from Z; significant missing ET
- Very low background

ATLAS Preliminary

• Main background: Z+jets (jet faking lepton)

6

8

σ^{total} [pb]

10

0

2

Δ

CMS-PAS-SMP-12-006

Eur.Phys.J. C73 (2013) 2283 ATLAS-CONF-2012-157

ATLAS, Is = 7 TeV, 4.7 fb-1

CMS, Is = 7 TeV, 5 fb⁻¹

CDF, \s = 1.96TeV, 2.7 / 3.9 fb⁻¹

180

68.9± 8.7±9.8 pb

16.0±3.3 pb

72± 9±20 pb

Stat error

WW+WZ $\rightarrow lvq\overline{q}$

WW/WZ->lvjj

- Trigger on a W and look at the di-jet spectrum; cannot distinguish WW from WZ
- Main background: W/Z+jets
- Challenge: background estimation, jet energy scale/resolution

13

CDF note 10957 Phys. Rev. D 88, 032008 (2013)

ATLAS-CONF-2013-020 JHEP03(2013)128

 $\square ZZ \rightarrow I^+I^-I^+I^-$

 $ZZ \rightarrow ||^{+} |\overline{\nu} \overline{\nu}$

₩+X ZZ→I⁺ľv⊽ Wγ/Wγ* Total Uncertainty

🔶 Data Z+X

Тор

🗆 WŻ

ZZ->III'I', IIvv

- Very low backgrounds
- Optimized for lepton efficiency, especially at low pT

>10¹⁰

10⁹

Events / 10⁷ 10⁷ 10⁵

 10^{4}

 $10^8 = 10^8$ Ldt = 4.6 fb⁻¹

 $\sqrt{s} = 7 \text{ TeV}$

15

CMS-PAS-SMP-13-005 Phys. Lett. B 721 (2013) 190-211 J. High Energy Phys. 01 (2013) 063

200

400

600

 $\begin{array}{ll} 7 \ \text{TeV} \ 5.0 \ \text{fb}^{-1} & 6.24 \begin{array}{c} {}^{+0.86}_{-0.80} \, (\text{stat.}) \begin{array}{c} {}^{+0.41}_{-0.32} \, (\text{syst.}) \pm 0.14 \, (\text{lumi.}) \, \text{pb} \\ 8 \ \text{TeV} \ 19.6 \ \text{fb}^{-1} & 7.7 \begin{array}{c} {}^{+0.5}_{-0.5} \, (\text{stat.}) \begin{array}{c} {}^{+0.5}_{-0.4} \, (\text{syst.}) \pm 0.4 \, (\text{theo.}) \pm 0.3 \, (\text{lum.}) \, \text{pb} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7.7 \pm 0.6 \ \text{pb} \end{array}$

1000

800

 $m_{\parallel \tau \tau} \, (GeV)$

Anomalous Triple Gauge Couplings

- SM describes exactly how vector bosons interact with each other
 - Even new physics at a higher energy scale will have indirect effects on TGC
- aTGC are modeled using effective Lagrangian depending on some parameters, which are all zero in SM

Coupling	Parameters	Channel
WWγ	Δκ _γ , λ _γ	WW, Wy
WWZ	$\Delta g_1^{Z}, \Delta \kappa_Z, \lambda_Z$	WW, WZ
ZZγ	h ₃ ^z , h ₄ ^z	Zγ
Ζγγ	$h_3^{\gamma}, h_4^{\gamma}$	Zγ
ZZZ	f_4^{Z}, f_5^{Z}	ZZ
ΖγΖ	f ₄ ^γ , f ₅ ^γ	ZZ

To interact by the rules or not?

high end of M(VV), and its proxies, e.g. pT The tail drives sensitivity!

p^z_T [GeV]

Charged aTGC (WWY, WWZ)

Phys. Rev. D 87, 112003 (2013) arXiv:1308.6832 (submitted to PRD) arXiv:1306.1126 (submitted to EPJC) Eur.Phys.J. C73 (2013) 2283 Phys.Lett. B718 (2012) 451-459 arXiv:1302.3415 Phys. Rev. D 87, 112001 (2013) Eur.Phys.J. C72 (2012) 2173

LEP remains most competitive here WV->lvjj doing well

LHC approaching LEP sensitivities

Phys. Rev. D 87, 112003 (2013) arXiv:1308.6832 (submitted to PRD) CMS-PAS-SMP-12-020 Phys. Rev. Lett. 107, 051802, 2011 JHEP03(2013)128 CMS-PAS-SMP-13-005

		- - 1	ATLAS Limits CMS Limits	- I I
εγ	ii	ZZ	-0.015 - 0.015	4.6 fb ⁻¹
T ₄	H	ZZ	-0.004 - 0.004	19.6 fb ⁻
٤Z	⊢−−−− 1	ZZ	-0.013 - 0.013 4	4.6 fb⁻¹
I ₄	H	ZZ	-0.004 - 0.004	19.6 fb ⁻
τγ	⊢−−−−	ZZ	-0.016 - 0.015	4.6 fb ⁻¹
1 ₅	н	ZZ	-0.005 - 0.005	19.6 fb ⁻
٤Z	⊢−−−− 1	ZZ	-0.013 - 0.013	4.6 fb ⁻¹
1 ₅	H	ZZ	-0.005 - 0.005	19.6 fb ⁻
-0.5	0	0.5	1 1.5	x10
			aTGC Limits @95%	6 C.L

Loops contribute 10⁻⁴; Some new models predict 10⁻⁴ to 10⁻³ Limits are already at interesting region!

Feb 2013			
			ATLAS Limits H
h ^γ	H	Zγ	-0.015 - 0.016 4.6 fb ⁻¹
13	н	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	H	Zγ	-0.022 - 0.020 5.1 fb ⁻¹
hZ	μι	Zγ	-0.013 - 0.014 4.6 fb ⁻¹
п ₃	н	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	├ ────┤	Zγ	-0.020 - 0.021 5.1 fb ⁻¹
$h^{\gamma} \times 100$	⊢ −−−1	Ζγ	-0.009 - 0.009 4.6 fb ⁻¹
n ₄ x 100	Н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹
hZv100	⊢ −−−1	Zγ	-0.009 - 0.009 4.6 fb ⁻¹
n ₄ x100	Н	Zγ	-0.001 - 0.001 5.0 fb ⁻¹
r i l r r			
-0.5	0	0.5	1 1.5 x10 ⁻¹
		2	aTGC Limits @95% C.L.

LHC dominates on neutral aTGC limits Sensitivity mostly from vvy

JHEP 1307 (2013) 116 Phys. Rev. D 88, 012005

 $\gamma\gamma$ ->WW->IVIV

p

 \bar{p}

- Opposite charged eµ vertex 0 extra track, pT(eµ) > 30 GeV
- 7TeV 5 fb⁻¹: 2 events observed (expected: 2.2 signal, 0.84 background)

CMS-PAS-SMP-13-009

Tri-boson: WVγ

- W->Iv; V: W/Z->jj
- $\sigma(WV\gamma) < 241$ fb, 3.4 times SM (photon pT > 10 GeV)

NEW

γγ->WW and tri-boson are used to set limits on anomalous Quartic Gauge Couplings

July 2013	LEP L3 limits D0 limits	\equiv	CMS WW γ limit CMS $\gamma\gamma \rightarrow$ WW I	s limits	
Anomalous WW	Vγγ Quartic Coupling limits @95% C.L.	Channel	Limits	L	١s
		WWγ	[- 15000, 15000]	0.43fb ⁻¹	0.20 TeV
		$\gamma\gamma \to WW$	[- 430, 430]	9.70fb ⁻¹	1.96 TeV
a ^w /∧ ² TeV ⁻²		WWγ	[- 21, 20]	19.30fb ⁻¹	8.0 TeV
0		$\gamma\gamma \to WW$	[- 4, 4]	5.05fb ⁻¹	7.0 TeV
		WWγ	[- 48000, 26000]	0.43fb ⁻¹	0.20 TeV
		$\gamma\gamma \to WW$	[- 1500, 1500]	9.70fb ⁻¹	1.96 TeV
a^{W}/Λ^2 TeV ⁻²		WWγ	[- 34, 32]	19.30fb ⁻¹	8.0 TeV
a _C /A lev		$\gamma\gamma{\rightarrow} WW$	[- 15, 15]	5.05fb ⁻¹	7.0 TeV
$f_{T,0}/\Lambda^4 \text{ TeV}^4$		WWγ	[- 25, 24]	19.30fb ⁻¹	8.0 TeV
-10 ⁵ -10 ⁴ -10 ³	-10 ² -10 - 1 1 10 10 ² 10 ³ 10 ⁴ 10) ⁵			

Summary

- Measurements are presented of diboson production cross sections
 - Proton-antiproton collisions at 1.96 TeV at Tevatron
 - Proton-proton collisions at 7 TeV and 8 TeV at LHC
- The measured cross sections are consistent with SM predictions
 - Differential cross sections are also measured in some channels
- Limits set on anomalous Triple Gauge Couplings. No evidence for new physics
- The study of Quartic Gauge Couplings has started
- Full statistics 8 TeV measurement in all channels at LHC will continue. Looking forward to 2015 run

Backup

$\mathsf{CMS}\;\mathsf{V}\gamma$

Selection	$W\gamma ightarrow e u \gamma$	$W\gamma ightarrow \mu u \gamma$	$Z\gamma \rightarrow ee\gamma$	$Z\gamma \rightarrow \mu\mu\gamma$
Trigger	single electron	single muon	dielectron	dimuon
$p_{\rm T}^{\ell}$ (GeV)	>35	>35	>20	>20
$ \eta^{\ell} $	EB or EE	<2.1	EB or EE	<2.4
$p_{\rm T}^{\gamma}$ (GeV)	>15	>15	>15	>15
$ \eta^{\gamma} $	EB or EE	EB or EE	EB or EE	EB or EE
$\Delta R(\ell, \gamma)$	>0.7	>0.7	>0.7	>0.7
$M_{\rm T}^{\rm W}$ (GeV)	>70	> 70		
$m_{\ell\ell}$ (GeV)			>50	>50
Other criterion	only one lepton	only one lepton		and and failed a

Table 2: Summary of selection criteria used to define the W γ and Z γ samples.

Radiation Amplitude Zeros

CMS Z γ ->vv γ 7 TeV

Source	Number of selected events
Misidentified jets	11.2 ± 2.8
Beam-gas processes	11.1 ± 5.6
Misidentified electrons	3.5 ± 1.5
$W\gamma$	3.3 ± 1.0
$\gamma\gamma$	0.6 ± 0.3
γ +jet	0.5 ± 0.2
Total	30.2 ± 6.5
$Z\gamma \rightarrow \nu \bar{\nu} \gamma (\text{NLO})$	45.3 ± 6.9
data	73

WW

CMS 8 TeV

Channel	$\ell' \nu \ell'' \nu$
W ⁺ W ⁻	684 ± 50
tt and tW	132 ± 23
W + jets	60 ± 22
WZ and ZZ	27 ± 3
$Z/\gamma^* + jets$	43 ± 12
$W\gamma^{(*)}$	14 ± 5
Total background	275 ± 35
Signal + background	959 ± 60
Data	1111

ATLAS 7 TeV

Selection criteria

Exactly two opposite-sign leptons $m_{\ell\ell'} > 15, 15, 10 \text{ GeV}$ $|m_{\ell\ell'} - m_Z| > 15, 15, 0 \text{ GeV}$ $E_{\text{T,Rel}}^{\text{miss}} > 45, 45, 25 \text{ GeV}$ Jet veto $p_{\text{T}}(\ell\ell') > 30 \text{ GeV}$

Data	ee 174	μμ 330	еµ 821	Combined 1325
WW	$100 \pm 2 \pm 9$	$186 \pm 2 \pm 15$	$538 \pm 3 \pm 45$	$824 \pm 4 \pm 69$
Тор	$22 \pm 12 \pm 3$	$32 \pm 14 \pm 5$	$87 \pm 23 \pm 13$	$141 \pm 30 \pm 22$
W + jets	$21 \pm 1 \pm 11$	$7 \pm 1 \pm 3$	$70 \pm 2 \pm 31$	$98 \pm 2 \pm 43$
Drell-Yan	$12 \pm 3 \pm 3$	$34 \pm 6 \pm 10$	$5 \pm 2 \pm 1$	$51 \pm 7 \pm 12$
Other dibosons	$13 \pm 1 \pm 2$	$21 \pm 1 \pm 2$	$44 \pm 2 \pm 6$	$78 \pm 2 \pm 10$
Total background	$68 \pm 12 \pm 13$	$94 \pm 15 \pm 13$	$206\pm24\pm35$	$369 \pm 31 \pm 53$
Total expected	$169\pm12\pm16$	$280\pm16\pm20$	$744 \pm 24 \pm 57$	$1192 \pm 31 \pm 87$

WZ 8 TeV

	sample	eee		eeµ	l		μμе	μμμ
	Z+jets	9.8 ± 4.4		16.9 ± 6.0		14.5 ± 5.4		13.8 ± 4.5
	top	1.4 ± 0.4		2.7 ± 0.3		6.2	2 ± 0.7	9.1 ± 1.0
	ZZ	2.4 ± 0.1	1	$3.1 \pm$	0.1	3.9	9 ± 0.1	5.8 ± 0.1
	$Z\gamma$	2.4 ± 0.9	9	$0.4 \pm$	0.4	3.8	8 ± 1.2	0
UN12	WV	0.1 ± 0.1	1	$0.1 \pm$	0.1	0.2	2 ± 0.1	2.2 ± 0.7
	VVV	6.1 ± 0.3	3	$7.9 \pm$	0.3	10.	4 ± 0.4	13.4 ± 0.4
	WZ	193.9 ± 1	.4	245.8 ±	1.6	315	$.9 \pm 1.9$	428.0 ± 2.2
	total MC	216.0 ± 4	.7	277.0 ±	6.3	354	$.9 \pm 6.0$	472.3 ± 5.2
	data-driven	$14.8 \pm 1.$	4	$27.1 \pm$	2.9	47.	9 ± 3.4	59.0 ± 4.6
	data	235		288	3		400	557
	Final State	eee		ееµ	еµ	μ	μμμ	Combined
	Observed	192		270	29	8	334	1094
	ZZ	10.3±0.6	1	4.7±0.8	12.8	±0.7	18.8±1.0) 56.6±1.6
AILAS	Z + jets	37±3±11	33	$3 \pm 4 \pm 10$	57±4	±11	47±5±14	4 188±8±24
	Тор		6.3	$\pm 0.5 \pm 3.4$			9.1±0.7±4	4.9
	$W/Z + \gamma$	13±3	1	.3±0.6	17:	±3	—	32±5
	Bkg (total)	$60 \pm 4 \pm 11$	5	5±4±10	87±5	±11	75±5±14	4 277±9±24
	Expected signal	144±12	1	99±16	200=	±16	276±21	819±34
	Expected S/B	2.4		3.7	2.	3	3.7	3.0
	$A \times C$	0.144		0.188	0.1	99	0.276	-

WV->Wjj 7 TeV

\frown	N /	
	IVI	S

Process	Muon channel	Electron channel	
Diboson (WW+WZ)	1900 ± 370	800±310	
W plus jets	67380 ± 590	31640 ± 850	
tī	1660 ± 120	950 ± 70	
Single top	650 ± 30	310 ± 20	
Drell-Yan+jets	3610 ± 160	1410 ± 60	
Multijet (QCD)	300 ± 320	4190 ± 870	
Data	75419	39365	
Fit $\chi^2/N_{\rm dof}$ (probability)	9.73/12 (0.64)	5.30/12 (0.95)	
Acceptance \times efficiency ($A\varepsilon$)	$(5.15 \pm 0.24) \times 10^{-3}$	$(2.63\pm 0.12)\times 10^{-3}$	
Expected WW+WZ yield from simulation	1700 ± 60	870 ± 30	
Process	е	μ	
WW	1250 ± 60	1360 ± 70	
WZ	276 ± 19	306 ± 21	
W + light jets	$(67 \pm 13) \times 10^3$	$(71 \pm 14) \times 10^3$	
W/Z + heavy flavor jets	$(19 \pm 4) \times 10^3$	$(20 \pm 4) \times 10^3$	
tī	$(24.8 \pm 2.5) \times 10^2$	$(24.6 \pm 2.5) \times 10^2$	
single top	$(13.5 \pm 1.3) \times 10^2$	$(13.7 \pm 1.4) \times 10^2$	
multijet	$(50 \pm 15) \times 10^2$	$(39 \pm 12) \times 10^2$	
Z + jets	$(35 \pm 7) \times 10^2$	$(32 \pm 6) \times 10^2$	
$W\gamma + ZZ$	383 ± 19	464 ± 23	
Total SM prediction	$(100 \pm 14) \times 10^3$	$(103 \pm 15) \times 10^3$	
Total Data	100055	103627	
Signal efficiency for $60 < m_{ii} < 120 \text{ GeV}$	0.7%	0.9%	
Signal to background ratio for $60 < m_{jj} < 1$	120 GeV 2.6%	2.8%	

ATLAS

CMS ZZ 8 TeV

Decay	N _{ZZ}	Background	Total	Observed
channel			expected	
μμμμ	$77.32 \pm 0.29 \pm 10.08$	$1.19 \pm 0.36 \pm 0.48$	$78.51 \pm 0.49 \pm 10.09$	75
eeee	$55.28 \pm 0.25 \pm 7.64$	$2.16 \pm 0.26 \pm 0.88$	$57.44 \pm 0.37 \pm 7.69$	54
μμee	$136.09 \pm 0.59 \pm 17.50$	$2.35 \pm 0.34 \pm 0.93$	$138.44 \pm 0.70 \pm 17.52$	148
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	$2.80 \pm 0.03 \pm 0.34$	$3.89 \pm 0.37 \pm 1.17$	$6.69 \pm 0.39 \pm 1.30$	10
$ee \tau_h \tau_h$	$2.46 \pm 0.03 \pm 0.32$	$3.46 \pm 0.34 \pm 1.04$	$5.92 \pm 0.36 \pm 1.15$	10
$ee\tau_e\tau_h$	$2.79 \pm 0.03 \pm 0.36$	$3.87 \pm 1.26 \pm 1.16$	$6.66 \pm 1.34 \pm 1.29$	9
$\mu\mu\tau_{\rm e}\tau_{\rm h}$	$2.87 \pm 0.03 \pm 0.37$	$1.49 \pm 0.67 \pm 0.60$	$4.36 \pm 0.71 \pm 0.73$	2
$\mu\mu\tau_{\mu}\tau_{h}$	$3.81 \pm 0.03 \pm 0.50$	$1.55 \pm 0.43 \pm 0.46$	$5.36 \pm 0.46 \pm 0.70$	5
$ee \tau_{\mu} \tau_{h}$	$3.27 \pm 0.03 \pm 0.42$	$1.47 \pm 0.41 \pm 0.44$	$4.74 \pm 0.43 \pm 0.63$	2
$ee \tau_e \tau_\mu$	$2.23 \pm 0.03 \pm 0.29$	$3.04 \pm 1.32 \pm 1.50$	$5.27 \pm 1.40 \pm 1.61$	4
$\mu\mu\tau_{\mu}\tau_{e}$	$2.41 \pm 0.03 \pm 0.32$	$0.74 \pm 0.51 \pm 0.37$	$3.15 \pm 0.54 \pm 0.51$	5
Total $\ell\ell\tau\tau$	$22.65 \pm 0.05 \pm 2.94$	$19.51 \pm 2.15 \pm 5.85$	$42.16 \pm 2.28 \pm 6.87$	47

Table 1: The observed and expected yield of ZZ events, and estimated yield of background events obtained from data are shown for each decay channel and are summed in the total expected yield ("Total expected.").

ATGC

• To stop unitarity violation, may use form factor: $\alpha(s) = \alpha(0)/(1+s/\Lambda)^n$

$$\begin{aligned} \mathcal{L}_{WWV}^{\text{eff}} &= ig_{WWV} [g_1^V (W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) V^\nu + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \\ &+ \frac{\lambda_V}{M_W^2} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu}], \end{aligned}$$

$\mathsf{CMS}\;\mathsf{WV}\gamma$

Process	muon channel	electron channel
	number of events	number of events
$W\gamma$ +jets	$136.9 \pm 3.5 \pm 9.2 \pm 0.0$	$101.6 \pm 2.9 \pm 8.0 \pm 0.0$
WV+jet, jet $ ightarrow \gamma$	$33.1 \pm 1.3 \pm 4.6 \pm 0.0$	$21.3 \pm 1.0 \pm 3.1 \pm 0.0$
MC $t\bar{t}\gamma$	$12.5 \pm 0.8 \pm 2.9 \pm 0.5$	$9.1 \pm 0.7 \pm 2.1 \pm 0.4$
MC single top	$2.8 \pm 0.8 \pm 0.2 \pm 0.1$	$1.7 \pm 0.6 \pm 0.1 \pm 0.1$
MC $Z\gamma$ +jets	$1.7 \pm 0.1 \pm 0.1 \pm 0.1$	$1.5 \pm 0.1 \pm 0.1 \pm 0.1$
multijets	${<}0.2{\pm}~0.0{}0.1{}0.0{}$	$7.2 \pm 3.6 \pm 3.6 \pm 0.0$
SM WW γ	$6.3 \pm 0.1 \pm 1.5 \pm 0.3$	$4.7 \pm 0.1 \pm 1.1 \pm 0.2$
SM WZ γ	$0.6 \pm 0.0 \pm 0.1 \pm 0.0$	$0.5 \pm 0.0 \pm 0.1 \pm 0.0$
Total predicted	$193.9 \pm 3.9 \pm 10.8 \pm 1.0$	$147.6 \pm 4.8 \pm 9.6 \pm 0.7$
Data	183	139