

Review of v_e Appearance Oscillation Experiments

PIC 2013

The XXXIII International Symposium on Physics in Collision

IHEP, Beijing, P. R. China

03 - 07 September 2013.

Vittorio Paolone University of Pittsburgh

- Introduction
 - Overview of v Oscillations
 Specifically v appearance
- Overview of Present Efforts and Goals
 T2K T2k
 - MINOS 💸
- Future
 - Near: NOvA 🔗
 - Far: LBNE (USA)-LAGUNA/LBNO(Europe), Hyper-K (Japan)

• Most precise measurements of the number of light, active neutrino types, N

• Z production in e⁺e⁻ Collisions.

The combined result (4 LEP experiments) is N

 $N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\rm SM}$

 $= 2.984 \pm 0.008$

(ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, and LEP Electroweak Working Group, and SLD Electroweak Group, and SLD Heavy Flavor Group, Phys. Reports 427, 257 (2006).)

Cosmological constraints

PIC 2013

IHEP, Beijing, September 3 - 7, 2018

Cosmological observables (CMB, lensing, galaxy and cluster distributions, etc. are sensitive to total neutrino mass sum:

Current upper bound from cosmology $\Sigma m_{\nu} < 0.23 \text{ eV}$ at 95% C.L. (Planck+WP+highL+BAO)

• We have directly observed three types in reactor and accelerator experiments:

 v_{e} : Reines and Cowan (Reactor) \rightarrow 1956

 v_{μ} : Lederman, Schwartz, & Steinberger (BNL) \rightarrow 1962

 \mathbf{V}_{τ} : DONuT (FNAL) → 2000

PIC13: September 5, 2013

V. Paolone, University of Pittsburgh

How Many v's?

How do $v_{e,\mu,\tau}$ interact?

• To identify the neutrino type they must interact through "Charged Current" interaction - CC:

What "flavor" of lepton is produced tells you what "flavor" of neutrino interacted

• Neutrinos can also interact are via "Neutral Current" - NC:

You don't know what "flavor" of neutrino interacted

Neutrino Masses and Mixing

 1969-90s Ray Davis Measures Solar ν_e Flux at Homestake Deep Underground Mine ~1/3 Expected! Gallex, Sage, SuperK, SNO, Kamland (Reactor)
 Interpretation: solar ν_e→1/3 ν_e+1/3ν_u+1/3ν_t (roughly)

• 1980s IMB, Kamioka, measure atm. ν_{μ} flux, less than expected. SuperK; K2K, MINOS (Accelerators) Confirm • Interpretation: atm. $\nu_{\mu} \rightarrow 1/2\nu_{\mu} + 1/2\nu_{\tau}$

What's going on... Neutrino Oscillations Established: → Neutrinos are not mass eigenstates

→ Neutrino Masses & Mixing Measurements Era Began
→ Evidence for physics beyond the Standard Model

PIC13: September 5, 2013

OK Now What?

- Neutrinos are the lightest fermions that make up the universe as described by the Standard Model.
- Neutrinos are very hard to detect, because they are electrically neutral and can only interact via the weak force (CC or NC)
- Neutrinos have unique properties

- There are fundamental questions about the nature of this new physics:
 - How are these masses are generated?
 - Is it related to standard model physics?
 - Higgs Mechanism? Seesaw mechanism?
 - What implications does it have for the early universe?
 - Matter antimatter asymmetry?

• At present Neutrino Physics is an experimentally driven field:

 Study of neutrino masses and mixings is our only known window into this new physics

$v_{e,\mu,\tau}$ Not Mass Eigenstates!

8

Simple two neutrino family first... Standard 2D Rotation Matrix —

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

With
$$x' = \alpha(\rightarrow \mu)$$
, $y' = \beta(\rightarrow \tau)$ and $x = m_1$ and $y = m_2 + QM$:
 $(\Delta m^2 = m_1^{2-} m_2^{2}, \text{ "wavelength" } \sim E/\Delta m^2)$
 $P_{\alpha \rightarrow \beta, \alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(1.267 \frac{\Delta m^2 L}{E} \frac{\text{GeV}}{\text{eV}^2 \text{km}}\right) \longrightarrow$

PIC13: September 5, 2013

PIC 2013 IIIEP, Edifing, September 3 - 7, 2018

But v oscillations involve (at least) 3 flavors

 3-flavor mixing describes (almost) all neutrino oscillation phenomena (3 mixing angles, 2 independent mass splittings, 1 CPV phase)

What Do We Know?

Solar+KamLAND	 $\theta_{12} = 33.5^{\circ} \pm 1^{\circ}$
SK, MINOS, T2K	 $\theta_{23} = 45^\circ \pm 4^\circ$
Daya Bay, Reno, Double Chooz	 $\theta_{13} = 8.7^{\circ} \pm 0.5^{\circ}$
(T2K: $\Theta_{13} \neq 0 \rightarrow \text{More later}$)	

PIC13: September 5, 2013

- Sign of the mass difference: $\Delta m_{31}^2 > 0$?
- ullet Value CP Violating Phase: δ
- $\Theta_{_{23}}$ Maximal? Octant?
- Are Neutrinos Dirac or Majorana?
- Are they any more v's? (sterile)

Types of Oscillation Experiments

Some specific examples:

 $v_{\mu} \rightarrow v_{\tau}$ Appearance

13

A detailed discussion of this topic would require another talk.... The disappeared v_{u} seem to be oscillating (*almost!*) all into v_{τ} 's:

- OPERA: 3 tau neutrino interactions observed with ~60% of the exposed emulsion stacks scanned
 - \rightarrow 7×10⁻⁴ probability that these 3 events are background

- Super-K using atmospheric data:
 - \rightarrow 3.8 σ appearance significance (see PRL 110, 181802)

 \rightarrow Statistical study based on a neural network analysis of zenith angle distribution

disadvantage/advantage of v_{a} appearance The experiments using long-baseline beams is that they are sensitive to multiple unknowns...

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e})_{vacuum} &= \\ \sin^{2}\theta_{23}\sin^{2}(2\theta_{13})\sin^{2}\Delta_{atm} \\ +\cos^{2}\theta_{23}\sin^{2}(2\theta_{12})\sin^{2}\Delta_{\odot} \\ \mp J_{r}\sin\delta_{CP}\sin^{2}\Delta_{atm}\sin\Delta_{\odot} \\ + J_{r}\cos\delta_{CP}\sin\Delta_{atm}\cos\Delta_{atm}\sin\Delta_{\odot} \\ (-neutrinos, +antineutrinos) \\ J_{r} &= \cos\theta_{13}\sin(2\theta_{13})\sin(2\theta_{12})\sin(2\theta_{23}) \end{split}$$

• dominant term $\approx \frac{1}{2} \sin^2(2\theta_{13})$ at osc. max.

- small for accelerator longbaseline L/E's
- sub-leading CP violating phase terms.

 $\Delta_{\odot} = 1.27 \Delta m_{12}^2 L/E$ $\Delta_{atm} = 1.27 \Delta m_{13}^2 L/E$

Sensitive to θ_{13} , δ_{CP} , θ_{23} , Δm^2_{13}

PIC 2013

The T2K Experiment (Tokai to Kamioka)

- **Goals:** • Observe electron neutrino appearance $(v_{\mu} \rightarrow v_{e})$
- Precision measurement of muon neutrino disappearance

Overview of T2K: Near Detectors

On-Axis Detector (INGRID) Monitor v: • Beam direction • Beam Intensity

Off-Axis Detector: In SK Direction Measure:

- ν flux
- Cross sections measurements using water targets to reduce systematic errors on oscillation parameters

The T2K Far Detector: Super-Kamiokande

Far Detector: Particle ID

Recorded Data: Run 1-4

T2K: Event Selection

v_{e} Selection Cuts:

- **#** veto hits < 16
- Fid. Vol. = 200 cm
- *#* of rings = 1
- Ring is e-like
- $E_{visible} > 100 \text{ MeV}$
- no Michel electrons
- fiTQun π^0 cut
- $0 < E_{\nu} < 1250 \text{ MeV}$
 - → 28 events for $6.39 \times 10^{20} \text{ POT}$

Expected v_e Events: 6.39 x 10²⁰ POT

Predicted # of events w/ 6.4×10^{20} POT:

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
v_{e} signal v_{e} background v_{μ} background (mainly NC π^{0})	0.38 3.17 0.89	16.42 2.93 0.89
$V_{\mu} + V_{e}$ background Total	0.20	0.19
Total	4.64	20.44

Systematic uncertainties:

Error source	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux + v int.	4.9 %	3.0 %
v int. (from other exp.)	6.7 %	7.5 %
Far detector	7.3 %	3.5 %
Total	11.1 %	8.8 %

Significant reduction of errors when Near Detector results used

PIC13: September 5, 2013

Oscillation Parameter Fitting Procedure

PIC13: September 5, 2013

$_{\rm u} \rightarrow v_{\rm e}$: Fitting Methods

Two analysis methods used:

PIC 2013

IHEP, Beijing, September 3 - 7, 2013

- Fit using 2D-distributions of electron momentum & angle \rightarrow Result presented here
- Maximum likelihood Fit using reconstructed neutrino energy distribution

\rightarrow Both methods result in consistent values

Using method 1: Differences in electron momentum and angle distributions allow signal and background separation and exploits detector measured variables:

	Run1-4 (p- θ)	Run1-4 (Erec)	Run4 only	Run1-3 (2013 analysis)
РОТ	6.39e20	6.39e20	3.38e20	3.01e20
Observed number of events	28	28	17	11
<u>Normal</u> <u>hierarchy</u> Best fit 90% C.L. 68% C.L.	0.150 0.097 - 0.218 0.116 - 0.189	0.152 0.099 - 0.222 0.118 - 0.193	0.180 0.105 - 0.280 0.131 - 0.237	0.112 0.050 - 0.204 0.072 - 0.164
<u>Inverted</u> <u>hierarchy</u> Best fit 90% C.L. 68% C.L.	0.182 0.119 - 0.261 0.142 - 0.228	0.184 0.120 - 0.264 0.143 - 0.230	0.216 0.129 - 0.332 0.160 - 0.283	0.136 0.062 - 0.244 0.088 - 0.198

PIC13: September 5, 2013

Results: Allowed regions of θ_{13} for different δ_{CP} values

Best fit w/ 68% C.L. error @ $\delta_{CP}=0$ normal hierarchy: $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$ inverted hierarchy: $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$ non-zero θ_{13} yields 7.5 σ

 $\rightarrow \sqrt{(2\Delta \ln L)}$ significance of

PIC 2013

IHIRP, Beijing, September 3 - 7, 2018

- T2K combined $v_{\mu} + v_{\mu}$ analysis is underway
- In the future, results will be reported in $\sin^2\theta_{23}$ rather than $\sin^22\theta_{23}$

- Baseline: L=735 km, < E >= 3 GeV
- Completed Data Taking in 2012
- Neutrino mode > 10^{21} PoT
- Antineutrino mode 3.3×10²⁰ PoT

MINOS Events

MINOS: v_e Appearance (2012)

 3.3×10^{20} POT anti- ν mode running:

Candidate Event Yields		
LEM>0.6:	Observed: Predicted:	20 17 5 bkg + 3 7 sig
LEM>0.7:	Observed: Predicted:	12 10 5 bkg + 3 1 sig
Prediction assuming $\sin^2(2\theta_{13})=0.1$, $\delta=0$, $\Delta m^2>0$		

 $10.6x10^{20}$ POT ν mode running:

Candidate Event Yields		
LEM>0.6:	Observed: Predicted:	152 128.6 bkg + 32.5 sig
LEM>0.7:	Observed: Predicted:	88 69.1 bkg + 26.0 sig
Prediction assuming $\sin^2(2\theta_{13})=0.1$, $\delta=0$, $\Delta m^2>0$		

PIC13: September 5, 2013

MINOS on $\delta_{_{\rm CP}}$

- Preliminary combined fit of both appearance and disappearance data: 3-flavor
 - Fit in 4D likelihood surfaces: $(\theta_{13}, \delta_{CP}, \theta_{23}, \Delta m_{32}^2)$
 - Constraint for θ₁₃ from the combination of Daya Bay+RENO+ Double Chooz measurements.
 - Others fixed to global average
- Normal hierarchy and upper octant disfavored at 81% C.L.

From João A. B. Coelho/Tufts FNAL 08-14-13 Talk

PIC13: September 5, 2013

Future: LBNE

Planning underway for a next generation appearance experiment optimized for improved δ and hierarchy sensitivity.

Very long baseline L~1300 km beam, Fermilab→Sanford (SURF)

Initial beam power $\sim 700 \text{ kW}$

PIC13: September 5, 2013

LBNE: Very LBL

1300km optimized baseline:

- Observe multiple oscillation peaks
- Mass Hierarchy(MH): Need Matter \rightarrow Longer baseline is better
- $\delta_{_{CP}}$: Need long enough baseline to resolve degeneracy with MH but short enough baseline to record enough events

LBNE Sensitivities

Mass Hierarchy Sensitivity

CP Violation Sensitivity

K 750 kW x 5 yr (7.8x10⁻¹ pot) v NOvA 700 kW x (3 yr v + 3 yr v) (3.8 x10⁻¹ pot) Bands: 1 σ variations of θ_{13} , θ_{23} , Δm_{31}^2 (Fogli et al. arXiv:1205.5254v3)

Best sensitivities will be achieved when combining all appearance experiments \rightarrow T2K, NOvA, and LBNE

- Neutrino physics is now in an era of precision measurements
 - It is a window into new physics
 - Measuring in detail the elements of the mixing/mass matrix is the only window we have to probe this new physics
- At this point Neutrino physics is experimentally driven
 - We need to over constrain the parameters in the mixing and mass matrix to check if we have the full story
 - Are there any inconsistencies in the model?
- Neutrino measurements are hard to make and expensive
 - Need statistics...
 - Will need to combine results from different experiments to get a clearer picture.
 - That has already started.

Blank

PIC13: September 5, 2013

V. Paolone, University of Pittsburgh

42