Bottom production, spectroscopy, lifetime

Jibo HE on behalf of the LHCb collaboration,

including results from the ALICE, ATLAS, CMS and CDF collaborations

CERN

Physics in Collision 2013 @ IHEP (Beijing), 06/09/2013

Jibo HE (CERN)

Bottom production, spectroscopy, lifetime

06/09/2013 1/32

Outline

- Includes new results made public since PIC2012, please refer to S. Argiro's talk [ink] on PIC2012 for old results
- Bottom production
 - Inclusive measurements, using electron, charmonium
 - Exclusive measurements, *b* meson, Λ_b^0 , B_c^+
- Bottom spectroscopy
 - ▶ B^{**}, B^{**}_s, b-baryon and B⁺_c masses
- Bottom lifetime
 - B_s^0 , Λ_b^0 and B_c^+ lifetimes
- My apologies in case I miss your favorite results

Bottom production

イロト イロト イヨト イヨト

- Measurements of heavy flavor production provides important tests of QCD
 - Parton distribution function
 - Hard parton scattering
 - Fragmentation
- Production cross-section at new energies also required to guide relevant studies, e.g., search for new physics
- Measurements of heavy flavor production in *pp* collisions provide mandatory baseline for nucleus-nucleus collisions

Bottom production using electron

Different sources of electrons separated using impact parameter

[ALICE, PLB 721 (2013) 13]

5/32

pp, \sqrt{s} = 7 TeV, $\int Ldt = 2.2 \text{ mb}^{-1}$

Bottom and charm differential cross-section described well by FONLL prediction

[M. Cacciari et al., JHEP 10 (2012) 137]

Bottom production using J/ψ

Bottom production using $\psi(2S)$

- [ATLAS-CONF-2013-094] [CMS, JHEP 02 (2012) 011] [LHCb, EPJC 72 (2012) 2100] • ATLAS measured bottom production using $b \rightarrow \psi(2S)X$ with $\psi(2S) \rightarrow J/\psi(\mu\mu)\pi^{+}\pi^{-}$, overlaid with CMS and LHCb results (note: different rapidity ranges)
- Compared to NLO and FONLL, some discrepancy for high *p*_T?

Bottom production, spectroscopy, lifetime

Bottom production using χ_c

[ATLAS, ATLAS-CONF-2013-095]

Jibo HE (CERN)

06/09/2013 8 / 32

Bottom production, spectroscopy, lifetime

b meson production

• LHCb measured $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$, and $B_s^0 \rightarrow J/\psi \phi$ production for 2 < y(B) < 4.5, in agreement with FONLL

[LHCb, JHEP 08 (2013) 117]

Jibo HE (CERN)

b meson production (cont.)

- $d\sigma/dp_T$, good agreement with FONLL
- Theo. uncertainty includes m_b , μ_R , μ_F and PDF

B^+ production by ATLAS

- ATLAS measured $B^+ \rightarrow J/\psi K^+$ in the central region
- Compared to CMS results, FONLL, POWHEG, and MC@NLO

[M. Cacciari et al., JHEP 10 (2012) 137]

Jibo HE (CERN)

Bottom production, spectroscopy, lifetime

06/09/2013 11/32

[ATLAS, arXiv:1307.0126] [CMS PRL 106 (2011) 112001]

√s=7 TeV. Ldt=2.4 fb

f_s/f_d

[LHCb, JHEP 04 (2013) 001]

- f_s/f_d needed for normalization of $B_s^0 \rightarrow \mu^+\mu^-$
- LHCb updated measurement of f_s/f_d with $B_s^0 \rightarrow D_s^- \pi^+$ and $B^0 \rightarrow D^- K^+$ using 2011 data (1 fb⁻¹)
- Evidence (3σ) of dependence on p_T(B⁰_s), while no indication of dependence on η(B⁰_s)

Λ_b^0 production

[CMS, PLB 714 (2012) 136] [LHCb, PRD 85 (2012) 032008]

13/32

• Measured with semileptonic decay modes (LHCb), and exclusive decay modes (CMS), $f_{\Lambda_b}/(f_u + f_d)$ has significant p_T dependence

Jibo HE (CERN)

Λ_b^0 production polarization

- Λ⁰_b longitudinal polarization vanishes (*P*-conservation of QCD) while transverse polarization could be as large as 20%
- Angular analysis of $\Lambda_b^0 \rightarrow J/\psi(\mu\mu)\Lambda(p\pi)$ allows to measure
 - Polarization and decay helicity amplitudes $\mathcal{M}_{J/\psi,\Lambda}$

 $(\mathcal{M}_{+1/2,0}, \mathcal{M}_{-1/2,0}, \mathcal{M}_{-1/2,-1}, \mathcal{M}_{+1/2,+1})$

• Parity-violating asymmetry parameter $\alpha_b = |\mathcal{M}_{+1/2,0}|^2 - |\mathcal{M}_{-1/2,0}|^2 + |\mathcal{M}_{-1/2,-1}|^2 - |\mathcal{M}_{+1/2,+1}|^2$

Λ_b^0 production polarization (cont.)

[LHCb, PLB 724 (2013) 27] [ATLAS, ATLAS-CONF-2013-071]

Results of LHCb and ATLAS

Variable	LHCb	ATLAS
α_b	$0.05 \pm 0.17 \pm 0.07$	$0.28 \pm 0.16 \pm 0.06$
$\mathcal{M}_{+1/2,0}$	$0.01\pm 0.04\pm 0.03$	$0.17^{+0.12}_{-0.17}\pm0.06$
$\mathcal{M}_{-1/2,0}$	$0.57 \pm 0.06 \pm 0.03$	$0.59^{+0.06}_{-0.07}\pm0.04$
$M_{-1/2,-1}$	$0.51 \pm 0.05 \pm 0.02$	$0.79^{+0.04}_{-0.05}\pm0.02$
$\mathcal{M}_{+1/2,+1}$	$-0.10 \pm 0.04 \pm 0.03$	$0.08^{+0.13}_{-0.08}\pm0.05$

- J/ψ and Λ from Λ_b^0 decay are highly polarized
- Parity-violating asymmetry parameter α_b in agreement with most predictions, but not with the HQET prediction

Method	Value	Reference
Factorization	-0.1	Cheng, PRD 56 (1997) 2799
Factorization	-0.18	Fayyazuddin and Riazuddin, PRD 58 (1998) 014016
Covariant oscillator quark model	-0.21	Mohanta et al., Prog. Theor. Phys 101 (1999) 959
Perturbative QCD	-0.17 to -0.14	Chou, Shih, Lee, PRD 65 (2002) 074030
Factorization (HQET)	0.78	Ajaltouni, Conte, Leitner, PLB 614 (2005) 165
Light front quark model	-0.20	Wei, Ke, Li, PRD 80 (2009) 094016

- *B⁺_c*, two different heavy flavor quarks, production more difficult than other *b* mesons
- Production cross-section at 7 TeV measured with $B_c^+ \rightarrow J/\psi \pi^+$ using 0.37 fb⁻¹ of data

$$\begin{aligned} R_{c/u} &= \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psiK^+)} \\ &= (0.68 \pm 0.10 \pm 0.03 \pm 0.05(\tau_{B_c^+}))\% \end{aligned}$$

for $p_{\mathrm{T}}(B) > 4$ GeV/c and 2.5 $< \eta(B) < 4.5$

 B_c^+ production

B_c^+ production (cont.)

[LHCb, arXiv:1308.4544]

- LHCb measured $\frac{f_c}{f_s} \cdot \mathcal{B}(B_c^+ \to B_s^0 \pi^+)$ using 2011 + 2012 data, for $2 < \eta(B) < 5$.
- Measured with $B_s^0 \to D_s^- \pi^+$ and $B_s^0 \to J/\psi \phi$ independently, results consistent with each other
- Combined results $\frac{f_c}{f_s} \cdot \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = \left(2.37 \pm 0.31 \pm 0.11 \frac{+0.17}{-0.12} (\tau_{B_c^+})\right) \times 10^{-3}$

• First observation of $B_c^+
ightarrow B_s^0 \pi^+$

Jibo HE (CERN)

Bottom spectroscopy

(a)

Bottom spectroscopy

• B mesons are heavy-light system of QCD

 States characterized by 6 =1/2i = 1/2=3/2three quantum numbers | = 0Orbital angular momentum B $\vec{j} = \vec{L} + \vec{s}_{u,d,s}$ Light quark angular momentum 5.7 $\vec{J} = \vec{i} + \vec{s}_h$ Total angular momentum S-wave 7 5.6 D-wave π 5.5 5.4 5.3 5.2

[CDF, EPS2013] [LHCb, LHCb-CONF-2011-053]

- Searched with $B^+\pi^-$ (left), $B^0\pi^+$ (right)
- Evidence of B(5970)? More investigations ongoing

B^{**} , comparison

Jibo HE (CERN)

Bottom production, spectroscopy, lifetime

06/09/2013 21 / 32

[CDF, EPS 2013] [LHCb, PRL 110 (2013) 151803]

Image: A match a ma

• Searched with B^+K^-

 S_{S}

B_s^{**} , comparison

Ξ_b^-, Ω_b^-

[LHCb, PRL 110 (2013) 182001] [CDF, PRD 80 (2009) 072003] [D0, PRL 101 (2008) 232002]

- Big discrepancy between CDF and D0 for Ω_b mass
 - CDF: 6054.4 ± 6.8 ± 0.9 MeV

- D0: $6165 \pm 10 \pm 13$ MeV
- ► Theo: 6052.1±5.6 MeV [M. Karlinera et al., Annals Phys.324 (2009) 2]

• LHCb measured with 1 fb⁻¹ of data, in agreement with CDF result

B_c^+ mass

[HPQCD, PRD 86 (2012) 094510]

Bottom production, spectroscopy, lifetime

LHCb (J/\u03c6 D_{5}^{*}) Average: 6274.86 ± 1.39

6260

6270 6280 6290 6300

06/09/2013 25 / 32

6310 6320

Bottom lifetime

イロト イロト イヨト イヨト

Bottom lifetime

- Decay of *b*-hadrons dominated by the weak decay of *b*-quark
- $\tau(B^0) \sim \tau(B^+) \sim \tau(B^0_s) \sim \tau(\Lambda^0_b)$, when ignoring contribution of lighter quarks
- Heavy Quark Expansion (HQE), decay rate of H_b

$$\Gamma_{H_b \to f} = |CKM|^2 \sum_n c_n^{(f)} \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^n \langle H_b | O_n | H_b \rangle$$

- $c_n^{(f)}$, coefficients of OPE, can be calculated perturbatively
- All non-perturbative physics shifted into (*H_b*|*O_n*|*H_b*), can be calculated using lattice QCD, or QCD sum rules, or related to other observables via HQE

イロト イポト イラト イラト 一日

B_s^0 lifetime

[ATLAS, JHEP 12 (2012) 072] [LHCb, NPB 873 (2013) 275]

- Due to B_s^0 mixing, two mass eigenstates $m_{\rm H}, m_{\rm L}$, with different lifetimes $\tau_{\rm H} = 1/\Gamma_{\rm H}, \tau_{\rm L} = 1/\Gamma_{\rm L}$
- Effective lifetime $\tau_{B_s^0} = 1/\Gamma_s$, $\Gamma_s = (\Gamma_H + \Gamma_L)/2$ is sensitive to $\Delta\Gamma_s$ and mixing induced CP-violating phase ϕ_s for CP-eigenstates
- Apart from measuring $B_s^0 \to K^+K^-$, and $B_s^0 \to J/\psi f_0(980)$, LHCb also measured $B_s^0 \to J/\psi K_s^0$ effective lifetime, $\sigma^{\text{eff}} = 1.75 \pm 0.12 \pm 0.05$ pa (ref: $\sigma^{\text{eff}} = 1.000$ cm s)

 $\tau_{J/\psi K_s^0}^{\text{eff}} = 1.75 \pm 0.12 \pm 0.05$ ps (ref: $\tau_{J/\psi K_s^0}^{\text{eff}}|_{\text{SM}} = 1.639 \pm 0.022$ ps)

Λ_b^0 lifetime

 Long-standing discrepancy between experiment and theory, eventually resolved with recent results from Tevatron and LHC

[LHCb, PRL 111 (2013) 102003]

- Take LHCb measurement as example, $\tau(\Lambda_b^0)/\tau(B^0)$ measured using $\Lambda_b^0 \to J/\psi pK$, and $B^0 \to J/\psi K^*$, in 16 bins of decay time
- Verified on simulation that the ratio of acceptance is flat

Λ_b^0 lifetime (cont.)

LHCb measured

- $\tau(\Lambda_b^0)/\tau(B^0) = 0.976 \pm 0.012 \pm 0.006$
- $\tau(\Lambda_b^0) = 1.482 \pm 0.018 \pm 0.012$ ps

Experiment LHCb (2013) [J/ψpK⁻] CMS (2012) [J/ψA] ATLAS (2012) [J/ψA] D0 (2012) [J/ψA] CDF (2011) [J/ψA] CDF (2010) [A⁺₆π⁻] D0 (2007) [J/ψA] D0 (2007) [Semileptoni

D0 (2007) [Semileptonic decay] DLPH (1999) [Semileptonic decay] ALEP (1998) [Semileptonic decay] OPAL (1998) [Semileptonic decay]

CDF (1996) [Semileptonic decay]

[LHCb, PRL 111 (2013) 102003]

Jibo HE (CERN)

06/09/2013 30 / 32

(日)

B_c^+ lifetime

- Both *b*, *c* quarks decay, or annihilate, $\tau(B_c^+) \sim \frac{1}{3}\tau(B^0)$
- B_c^+ lifetime was measured using semi-leptonic decays, before CDF did it with exclusive $B_c^+ \rightarrow J/\psi \pi^+$ (6.7 fb⁻¹)
- Acceptance from MC, and verified on simulation

• $\tau(B_c^+) = 0.452 \pm 0.048 \pm 0.027$ ps, consistent with previous measurements

A B F A B F

- Many new results on bottom production, spectroscopy, and lifetimes
- Experimental measurements agree with theoretical predictions well, while in some cases, the experimental precision is much better
- More accurate theoretical prediction needed, possible to reduce theo. uncertainties? E.g.
 - Uncertainty due to $\mu_{\rm R}$ and $\mu_{\rm F}$
 - ► Branching fractions, ratio of BRs $\frac{\mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psiK^+)}$
- Many new results will come soon, stay tuned