Hadron and Quarkonium Exotica

Sookyung Choi Gyeongsang National University

Physics in Collision, IHEP, Beijing, Sep 4-7, 2013

multiquark states from diquarks & diantiquarks

multiquark states from "molecules"

-new dimensions to Nuclear Physics-

Non-qq mesons or non-qqq baryons predicted by `QCD-motivated' models

non-qq & non-qqq color-singlet combinations

H-Dibaryon

Baryonium

• Doubly charged state

No Pentaquarks

H dibaryon

R.L. Jaffee, PRL 38, 195 (1977): $J^P = 0^+ di$ -hyperon with $M_H \approx 2m_{\Lambda} - 80 \text{ MeV}$

Figure 1: Theoretical predictions for the mass of the H-dibaryon as a function of year of prediction

Recent Lattice QCD calculations

S.R. Beane et al (NPLQCD) PRL 106, 062001 (2011)

T. Inoue et al (NPLQCD) PRL 106, 062002 (2011)

Evidence for a Bound H-dibaryon from Lattice QCD

S.R. Beane,^{1,2} E. Chang,³ W. Detmold,^{4,5} B. Joo,⁵ H.W. Lin,⁶ T.C. Luu,⁷
 K. Orginos,^{4,5} A. Parreño,³ M.J. Savage,⁶ A. Torok,⁸ and A. Walker-Loud⁹
 (NPLOCD Collaboration)

(NPLQCD Collaboration)

 ¹Albert Einstein Zentrum für Fundamentale Physik, Institut für theoretische Physik, Sidlerstrasse 5, CH-3012 Bern, Switzerland
 ²Department of Physics, University of New Hampshire, Durham, NH 0382,-3568, USA
 ³Dept. d'Estructura i Constituents de la Matèria. Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí Franquès 1, E08028-Spain
 ⁴Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795, USA
 ⁵Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA
 ⁶Department of Physics, University of Washington, Box 351560, Seattle, WA 98195, USA
 ⁷N Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
 ⁸Department of Physics, Indiana University, Bloomington, IN 47405, USA
 ⁹Lawrence Brekeley National Laboratory, Derkeley, CA 94720, USA (Dated: December 20, 2010)

 $M_{H} = 2m_{\Lambda} - 16.1 \pm 2.1 \pm 4.6 \text{ MeV}$

Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD

Takashi Inoue¹ Noriyoshi Ishii², Sinya Aoki^{2,3}, Takumi Doi³, Tetsuo Hatsuda^{4,5}, Yoichi Ikeda⁶, Keiko Murano⁷, Hidekatsu Nemura⁸, Kenji Sasaki³ (HAL QCD Collaboration)

¹Nihon University, College of Bioresource Sciences, Fujisawa 252-0880, Japan
 ²Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
 ³Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
 ⁴Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
 ⁵IPMU, The University of Tokyo, Kashiwa 277-8583, Japan
 ⁶Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako 351-0198, Japan
 ⁷High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
 ⁸Department of Physics, Tohoku University, Sendai 980-8578, Japan

$M_{H} = 2m_{\Lambda} - "(30~40) \text{ MeV}"$

Production via gluons in $\Upsilon(1S)$ decays

Anti-deuteron production in $\Upsilon(1S)$ decays

D.M. Asner et al (CLEO) PRD 75, 012009 (2007)

Belle data samples: $100 \times 10^6 \Upsilon(1S)$ decays + $160 \times 10^6 \Upsilon(2S)$ decays

Belle data samples: $100 \times 10^6 \Upsilon(1S)$ decays + $160 \times 10^6 \Upsilon(2S)$ decays

B.H. Kim et al (Belle) PRL 110, 222002 (2013)

$p\bar{p}$ bound state in $J/\psi \rightarrow \gamma p\bar{p}$?

BESII -- 10 years ago --

2012, with 5x more data

A pp bound state (baryonium)?

There are lots & lots of models about this possibility

Expectation for pp bound state

Are the $p\overline{p}$, $\pi^+\pi^-\eta' \& 3(\pi^+\pi^-)$ peaks all from the same state?

channel	M (Mev)	Γ (MeV)	J ^{PC}	Bf(J/ψ→γX)xBf(X→f i)
pp	1832^{+32}_{-38}	13 ⁺²⁵ ₋₁₃	0-+	(0.9 ^{+0.3} _{-0.5})x10 ⁻⁴
π ⁺ π ⁻ η'	1837 ⁺⁷ -4	190 ⁺³⁹ ₋₃₇	0-+(?)	(2.9±0.1)x10 ⁻⁴
3(π+π-)	1842 ⁺⁸	83±17	? ?+	(0.24±0.08)x10 ⁻⁴

Need: J^{PC} measurement for the X(1842) \rightarrow 3($\pi^+\pi^-$) signal better measurements of widths & line shapes other decay modes

Some of this will be done soon with BESIII's 1.2B J/ ψ event data sample,

Charmed Meson Spectrum Puzzle

The $D_s \& D_s^*$ masses are heavier than the D & D* masses, consistent with $m_s - m_q \sim 100 \text{MeV}$. Why aren't the $D_{s0}(2317)$ and $D_{s1}(2458)$ masses higher than their non-strange partners?

Search for Z^{++} (= $D_{sJ}^{++}(2317)$)

Some theorists (e.g. Terasaki, PTP 116, 435 (2006)) interpret D_{sJ} mesons as tetraquarks

D_{s0}⁺(2317) production

Improved BF for $B \rightarrow D_{s0}^+ D$: $D_{s0}^+ \rightarrow K^+ K^- \pi^+$

$$B^0 \rightarrow D^- D^+_{s0}(2317) \ D^- \rightarrow K^+ \pi^- \pi^-$$

 $Bf(B^{0} \rightarrow D^{-}D_{s0}^{+}(2317))Bf(D_{s0}^{+} \rightarrow D_{s}^{+}\pi^{0})$ = (1.00 ± 0.12 ± 0.10 ± 0.05) × 10⁻³

PDG(B⁰): (0.97^{+0.40}-0.33)×10⁻³

 $Bf(B^+ \to \overline{D^0}D^+_{s_0}(2317))Bf(D^+_{s_0} \to D^+_s\pi^0)$

PDG(B⁺): (0.73^{+0.22}-0.17)×10⁻³

Belle Preliminary²²

 $= (0.78^{+0.13}_{-0.12} \pm 0.10 \pm 0.05) \times 10^{-3}$

Agrees with PDG avgs

& improves on the errors

weighted average

Search for Z⁺⁺ in B⁺ \rightarrow D⁻Z⁺⁺; Z⁺⁺ \rightarrow D⁺_{s0} π^+

Belle Preliminary

 $Bf(B^+ \rightarrow D^-Z^{++}(2317))Bf(Z^{++} \rightarrow D_s^+\pi^+) < 0.28 \times 10^{-4}$ (90% CL)

No indication of signal Factor of ~30 below predicted level BaBar search in e+e- annihilation

 $\frac{\sigma(e^+e^- \to D_{sJ}^{++}X)}{\sigma(e^+e^- \to D_{sJ}(2317)^+X)} < 1.7 \times 10^{-2} @95\%CL$ $\frac{\sigma(e^+e^- \to D_{sJ}^0X)}{\sigma(e^+e^- \to D_{sJ}(2317)^+X)} < 1.3 \times 10^{-2} @95\%CL$

23

The XYZ quarkonium-like mesons

Charmonium spectrum

Any meson that decays to a c and \overline{c} quark should fit in one of the (gray) unassigned states.

XYZ charmoniumlike mesons

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	
X (3872)	3871.52 ± 0.20	1.3 ± 0.6 (<2.2)	1**	$B \to K(\pi^+\pi^- J/\psi)$ $p\bar{p} \to (\pi^+\pi^- J/\psi) + \psi$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$ $B \to K(\gamma J/\psi)$	 Y(4260) →γ X(3872)
Z _c (3900)+	3899 ± 6	46 ± 22	1 +(-)	Y(4260)→π⁻(π⁺J/ψ)	
X (3915)	3915.6 ± 3.1	28 ± 10	0++	$B \to K(\omega J/\psi)$	
				$e^+e^- \to e^+e^-(\omega J/\psi)$	
X(3940)	3942_{-8}^{+9}	37^{+27}_{-17}	0-+	$e^+e^-\to J/\psi(D\bar{D}^*)$	
				$e^+e^- \rightarrow J/\psi \; (\ldots)$	
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$)
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	0+(+)/1-(+)	$B\to K(\pi^+\chi_{c1}(1P))$	
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	0-+	$e^+e^-\to J/\psi(D\bar{D}^*)$	
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72} ()+(+)/1-(+)	$B \to K(\pi^+ \chi_{c1}(1P))$	
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$)

$$\begin{array}{ccccc} e^+e^- \to (\pi^+\pi^-J/\psi) \\ e^+e^- \to (\pi^0\pi^0J/\psi) \\ Y(4274) & 4274.4^{+8.4}_{-6.7} & 32^{+22}_{-15} & ?^{?+} & B \to K(\phi J/\psi) \\ X(4350) & 4350.6^{+4.6}_{-5.1} & 13.3^{+18.4}_{-10.0} & 0,2^{++} & e^+e^- \to e^+e^-(\phi J/\psi) \\ Y(4360) & 4353 \pm 11 & 96 \pm 42 & 1^{--} & e^+e^- \to \gamma(\pi^+\pi^-\psi(2S)) \\ Z(4430)^+ & 4443^{+24}_{-18} & 107^{+113}_{-71} & \mathbf{1}^{+(-)} & B \to K(\pi^+\psi(2S)) \\ X(4630) & 4634^{+9}_{-11} & 92^{+41}_{-32} & 1^{--} & e^+e^- \to \gamma(\Lambda^+_c\Lambda^-_c) \end{array}$$

cc assignments for the XYZ mesons?

Quantum numbers of the Z(4430)⁺ Z(4430)⁺ $\rightarrow \pi^+\psi'$ in B $\rightarrow K^-\pi^+\psi'$

Results from 4D fit $(M^2(K\pi), M^2(\psi'\pi), \phi\psi', \theta\psi')$

arXiv:1306.4894 $M^2(\psi'\pi)$ GeV²/c⁴

					-
J^P	0^{-}	1-	1+	2^{-}	2^{+}
Mass, MeV/c^2	4470 ± 20	4482 ± 4	4500 ± 12	4545 ± 2	4367 ± 2
Width, MeV	139 ± 36	10.9 ± 0.3	126 ± 20	11.2 ± 0.6	9.1 ± 0.6
Significance	4.4σ	1.2σ	6.1σ	2.3σ	2.6σ

1+ is favored over 0- by 2.9 σ

the Y(4260)

$Y(4260) → π^+π^-J/ψ$ confirmed by Belle

Is there a b-quark version of Y(4260)?

Bottomonium spectrum 2013

"bottomonium" bb mesons

JPC

parent	N(π⁺π⁻Ƴ(1S))	Γ(Y ₄₅ →ππΥ ₁₅)	$\Gamma_{ ext{theory}}$
Ύ(4S)	52±10	1.75 ± 0.35 keV	1.47±0.03 keV
"Ƴ(5S)"	325±20	590 ± 110 keV	<1.5 keV

В

b

d

∧ B*

d

38

$B-\overline{B}^* \& B^*-\overline{B}^* molecules??$ $Z_{b}(10610)^{\pm}$ $Z_{b}(10650)^{\pm}$ b B* **B*** B-B^{*} "molecule" B*-B* "molecule" $M_{Z_{b}(10610)} - (M_{B} + M_{B^{*}}) = +2.7 \pm 2.1 \text{ MeV}$ $M_{Z_{b}(10650)} - 2M_{B^*} = +2.0 \pm 1.8 \text{ MeV}$

Slightly unbound threshold resonances??

Belle:
$$M=10607.2\pm 2.0 \text{ MeV}$$

 $\Gamma=18.4\pm 2.4 \text{ MeV}$ $M=10652.2\pm 1.5 \text{ MeV}$
 $\Gamma=11.5\pm 2.2 \text{ MeV}$ PDG: $M_B + M_{B^*} = 10604.5\pm 0.6 \text{ MeV}$ $M_{B^*} + M_{B^*} = 10650.2 \pm 1.0 \text{ MeV}$
39

Are there c-quark versions of Z_b's

run BEPCII/BESIII as a Y(4260) factory

Observation of e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}h_{c}(1P)$

BESIII preliminary

Charm, Changzheng Yuan

 $h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow hadrons [16 exclusive decay modes added]$

e⁺e⁻→ π⁻ (D^{*}D^{*})⁺ + c.c. at BESIII

827 pb⁻¹ data at Ecm=4.26 GeV

Charm, Changzheng Yuan

Tag a D⁺ and a bachelor π^- , reconstruct one π^0 to suppress the background.

Topology of the decays of the signal process. Thick line circled D^+ and π^- are detected in the final states and at least one of the dashed line circled π_1^0 or π_2^0 is tagged.

Topology of the decays of the signal process. Thick line circled D^+ and π^- are detected in the final states and at least one of the dashed line circled π_1^0 or π_2^0 is tagged.

e⁺e⁻→ $\pi^{-}Z_{c}(4025)^{+}$ → $\pi^{-}(D^{*}\overline{D}^{*})^{+}$ +c.c.

BESIII: 1308.2760, submitted to PRL

Fit to π^{\pm} recoil mass >10 σ Yields : 401±47 $Z_c(4025)$ events. M($Z_c(4025)$) = 4026.3±2.6±3.7 MeV $\Gamma(Z_c(4025))$ = 24.8±5.6±7.7 MeV

$$\sigma(e^{+}e^{-} \to (D^{*}D^{*})^{\pm}\pi^{\mp}) = (137 \pm 9 \pm 15)pb$$

$$R = \frac{\sigma(e^{+}e^{-} \to Z_{c}^{\pm}\pi^{\mp} \to \pi^{\pm}(D^{*}\overline{D^{*}})^{\mp})}{\sigma(e^{+}e^{-} \to (D^{*}\overline{D^{*}})^{\pm}\pi^{\mp})} = (65 \pm 9 \pm 6)\%$$

$Z_{c}(4020)=Z_{c}(4025)?$

• $M(4020) = 4021.8 \pm 1.0 \pm 2.5 \text{ MeV}$

- $M(4025) = 4026.3 \pm 2.6 \pm 3.7 \text{ MeV}$
- $\Gamma(4020) = 5.7 \pm 3.4 \pm 1.1 \text{ MeV}$
- $\Gamma(4025) = 24.8 \pm 5.7 \pm 7.7 \text{ MeV}$

PDG2012: $M_{D^{*+}} + M_{D^{*0}} = 4017.3 \pm 0.2 \text{ MeV}$

Close to D*D* threshold=4017 MeV Mass consistent with each other but width $\sim 2\sigma$ difference

Interference with other amplitudes may change the results

Coupling to πD^*D^* is much larger than to πh_c if they are the same state

Will fit with Flatte formula

Summary

QCD-motivated spectroscopies predicted by theorists do not seem to exist

- evidence for Pentaquarks has disappeared
- H-dibaryon with mass near $2m_\Lambda$ is excluded at stringent levels
- No hint on D_{s0}^{++} isospin partner state of $D_{s0}^{+}(2317)$

Numerous non-qq mesons not specific to QCD have been found

- Baryonium in J/ $\psi \rightarrow \gamma p \overline{p}$ at BESII and BESIII ??
- XYZ mesons containing $c\overline{c}$ and $b\overline{b}$ pairs

• The J^{PC}=1⁻⁻ Y(4260) and " Υ (5S)" have no compelling interpretation

- huge couplings to $\pi^+\pi^-J/\psi$ ($\pi^+\pi^-\Upsilon(nS)$) \leftarrow not predicted in any model!!
- strong sources of charged $Z_c (Z_b)$ states with M near $m_{D(*)}+m_{D^*} (m_{B(*)}+m_{B^*})$

Back-up slides

$Z_{b1} \& Z_{b2}$, "smoking guns" for non-qq mesons

> decays to Y (nS) & h_b(nP) → must contain bb pair
 > electrically charged → must contain ud pair

60

50

40

30

20

10

0.2

0.4

Events / 30 MeV/c²

(a)

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from ISR

Belle: PRL110, 252002

- 1. M²(ππ) vs. M²(πJ/ψ) for 4.15<M(ππJ/ψ) <4.45 GeV
- (inset) Background events in J/ψ-mass sidebands
- 3. Structures both in $\pi\pi$ and $\pi J/\psi$ systems

Events / 20 MeV/c²

4. 689 evts in J/ψ signal region, purity~80%

+ data

— мс

---- Z(3900) MC

Sideband

0.6

0.8

 $M(\pi^+\pi^-)$ (GeV/c²)

1.2

1

1.4

Neutral Z_b^0 in $Y(5S) \rightarrow Z_b^0 \pi^0 \rightarrow Y(nS)$ $\pi^0 \pi^0$

BESIII collected 3.3/fb for XYZ study

The "Nagara" ⁶_{AA}He event

H. Takahashi *et al*, PRL 87, 215502 (1977): $M_H > 2m_{\Lambda} - 7.7 \text{ MeV}$

•Belle & BaBar:: $\Gamma(X \rightarrow D\overline{D}^*)/\Gamma(X \rightarrow \pi^+\pi^-J/\psi)=9.5 \pm 3.1$ $\eta_{c2} \rightarrow \gamma h_c(1S) \& \pi \pi \eta_c$ modes expected to dominate

" Υ (5S)" is very different from other Υ states

Anomalous production of $\Upsilon(nS) \pi^+\pi^ \Gamma(MeV)$ Belle PRL 100, 112001 (2008) 23.6 fb⁻¹ $\Upsilon(5S) \to \Upsilon(1S)\pi^+\pi^- \quad 0.59 \pm 0.04 \pm 0.09$ $\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^- \quad 0.85 \pm 0.07 \pm 0.16$ $\Upsilon(5S) \to \Upsilon(3S)\pi^+\pi^- = 0.52^{+0.20}_{-0.17} \pm 0.10$ X10⁻² $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$ 0.0060 $\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$ 0.0009 $\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$ 0.0019 $Bf(Y(4S) \rightarrow \pi^{+}\pi^{-}Y(1S)) = (0.008 \pm 0.0003)\%$

 $Bf(Y(5S) \rightarrow \pi^{+}\pi^{-}Y(1S)) = (0.53 \pm 0.06)\%$

Recall Y(4260) with anomalous $\Gamma(J/\psi \pi^+\pi^-)$ \Rightarrow Is there a Y_b equivalent close to Y(5S)

The "XYZ" mesons

	State	M (MeV)	Г (MeV)	J ^{PC}	Decay Modes	Production Modes
	$Y_{s}(2175)$	2175 ± 8	58 ± 26	1	$\phi f_0(980)$	e^+e^- (ISR) $J/\psi ightarrow \eta Y_s(2175)$
	→X(3872)	$\textbf{3871.4} \pm \textbf{0.6}$	< 2.3	1++	$\pi^+\pi^- J/\psi$, $\gamma J/\psi$, $Dar{D^*}$	$B ightarrow KX(3872), par{p}$
	X(3915)	3914 ± 4	23 ± 9	$0/2^{++}$	$\omega J/\psi$	$\gamma\gamma ightarrow X$ (3915)
	Z(3930)	3929 ± 5	29 ± 10	2++	DD	$\gamma\gamma \rightarrow Z(3940)$
	X(3940)	3942 ± 9	37 ± 17	0 ^{?+}	$Dar{D^*}$ (not $Dar{D}$ or $\omega J/\psi)$	$e^+e^- \rightarrow J/\psi X(3940)$
	Y(3940)	3943 ± 17	87 ± 34	? ^{?+}	$\omega J/\psi$ (not $D\bar{D^*}$)	$B \rightarrow KY(3940)$
	Y(4008)	4008^{+82}_{-49}	226^{+97}_{-80}	1	$\pi^+\pi^- J/\psi$	$e^+e^-(ISR)$
	X(4160)	4156 ± 29	139^{+113}_{-65}	0 ^{?+}	$D^* \bar{D^*}$ (not $D \bar{D}$)	$e^+e^- ightarrow J/\psi X(4160)$
	Y(4260)	4264 ± 12	83 ± 22	1	$\pi^+\pi^- J/\psi$	e^+e^- (ISR)
	Y(4350)	4361 ± 13	74 ± 18	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$
	X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$\Lambda_c^+ \Lambda_c^-$	$e^+e^-(ISR)$
	Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$
	Z(4050)	4051^{+24}_{-23}	82^{+51}_{-29}	?	$\pi^{\pm}\chi_{c1}$	$B \rightarrow KZ^{\pm}(4050)$
	Z(4250)	4248_{-45}^{+185}	177^{+320}_{-72}	?	$\pi^{\pm}\chi_{c1}$	$B ightarrow KZ^{\pm}$ (4250)
	Z(4430)	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \rightarrow KZ^{\pm}(4430)$
	$Y_b(10890)$	$10,890\pm3$	55 ± 9	1	$\pi^+\pi^-\Upsilon(1,2,3S)$	$e^+e^- ightarrow Y_b$
-	→Z _{b1} (10610) →Z _{b2} (10650)	10,607±2 10,653±2	18±2 12±2	1 ⁻ 1 ⁻	π [±] Υ(1,2,3S)/h _b (1,2S); BB [*] π [±] Υ(1,2,3S)/h _b (1,2S);B*B	* `Υ(5S)'→π [±] Ζ _{b1} .* `Υ(5S)'→π [±] Ζ _{b2}

