



# MRPC detector for the upgrade of BESIII E-TOF

# **Rongxing Yang**

**University of Science and Technology of China** 

PIC 2013, Beijing





- The current BESIII E-TOF: EJ204 scintillator + R5924 PMT
  - μ: 110ps
    e: 148ps



**π**: 138ps

MRPC technology has been used as TOF on LHC/ALICE, RHIC/STAR, etc.

- Upgrade with MRPC
  - Higher granularity
  - Better time resolution:
    - MRPC intrinsic: <55ps
    - Non-intrinsic: ~50ps
  - → Total resolution <80ps</p>



average 1.0 GeV for  $2\sigma \pi/K$  separation

1.4 GeV for  $2\sigma \pi/K$  separation!



## The design for **BESIII E-TOF**



**□** Each E-TOF ring: 36 overlapping MRPCs □ MRPC modules: sealed in gas-tight boxes □ Thickness of each box: < 25 mm **□** FEE boards: between nearby boxes





### Structure of the MRPC





#### Double-end readout strip:

- Width: 2.5 cm
- Length: 8.6-14.1 cm
- ≻ 24 channels/module
   → 24 x 36 x 2 = 1728









- 1. Three MRPCs aligned along the beam and tested together.
- 2. Use MRPC as time reference (T0); Self-calibration method
- 3. Slewing correction by T-TOT
- 4. Analysis pion (MIP) and proton events at different momentum.



### **Slewing correction**



#### T-TOT slewing correction: Fit the T-TOT correlation for each MRPC. The reference time is the mean time of the other two MRPCs.

- Recycle these steps with the corrected time for 3-4 times.
- The time resolution of each MRPC achieved.



This method will be very helpful for the performance test in the mass production!



Sep.5,2013



#### The test results



| Momentum         |         | 500MeV | 600MeV | 800MeV |
|------------------|---------|--------|--------|--------|
| Pion<br>sample   | MRPC #1 | 56 ps  | 47 ps  | 45 ps  |
|                  | MRPC #2 | 51 ps  | 48 ps  | 40 ps  |
|                  | MRPC #3 | 46 ps  | 48 ps  | 45 ps  |
| Proton<br>sample | MRPC #1 | 29 ps  | 32 ps  | 36 ps  |
|                  | MRPC #2 | 28 ps  | 30 ps  | 35 ps  |
|                  | MRPC #3 | 31 ps  | 31 ps  | 35 ps  |

| Unit: ps | $HV = \pm 7250 V$ | stripID: #6 |
|----------|-------------------|-------------|
|          |                   |             |

- □ Beam incident position: center of strip #6
- □ Time resolution:
  - Pion (MIP): ~50 ps
  - Proton: much better (higher dE/dx, More primary ionizations generate in the MRPC gas gaps)



Sep.5,2013

### Performance dependence on position





| @600MeV |       | Strip ce | enter - | → St  | rip end |       |
|---------|-------|----------|---------|-------|---------|-------|
| Pion    |       | 48 ps    |         | 49 ps | 49 ps   | 47 ps |
| Proton  | 29 ps | 27 ps    | 26 ps   | 29 ps | 31 ps   | 36 ps |

PIC 2013, Beijing



#### **Performance @ different HV**



| 600MeV |    | 7250V | 7300V | 7500V |
|--------|----|-------|-------|-------|
| Pion   | M1 | 47    | 47    | 49    |
|        | M2 | 48    | 48    | 46    |
|        | M3 | 48    | 49    | 48    |
| Proton | M1 | 32    | 33    | 34    |
|        | M2 | 30    | 29    | 30    |
|        | M3 | 31    | 32    | 32    |
|        |    |       |       | /1.1  |

(Unit: ps)

# The stable performance benefits from the long plateau of MRPC.





# Successfully design, built and test the MRPC prototype for BESIII ETOF.

Summary

- 12 gas gap structure
- double-end readout strips.
- The proposed performance achieved.
  - Time resolution ~50 ps for MIPs (including the custom designed electronics)
- The detector shows stable performance at different position & working HV.
- The systematic construction project has been approved and will start soon.

## Thank you !