Contribution ID: 29 Type: not specified

The need for an early anti-neutrino run of NO ν A

The moderately large value of θ_{13} , measured recently by reactor experiments, is very welcome news for upcoming accelerator experiments. In particular, the NO ν A experiment, with 3 years of ν run followed by an equal $\bar{\nu}$ run, will be able to determine the mass hierarchy if one of the following two favorable combinations is true: normal hierarchy with $-180^{\circ} \le$ $dcp \leq 0$ or inverted hierarchy with $0 \le$ $dcp \leq 180^{\circ}$. In this work, we study the hierarchy reach of the first 3 years of NO ν A data. Since $\sin^2 2\theta_{23}$ is measured to be non-maximal, θ_{23} can be either in the lower or higher octant. The true octant of θ_{23} has a deep impact on the hierarchy reach of early NO ν A data. With the present uncertainty of 10% in $\sin^2 2\theta_{13}$, equal 1.5 year ν and $\bar{\nu}$ runs have better hierarchy determination capability compared to a pure 3 year ν run. Daya Bay expects to reduce the uncertainty in $\sin^2 2\theta_{13}$ to 5%. Such a reduction improves the hierarchy reach of a 3 year ν run for two of the four octant-hierarchy combinations, but still fails to give any sensitivity for the other two. However, equal 1.5 year ν and $\bar{\nu}$ runs have reasonable hierarchy sensitivity for all four combinations.

Primary author: Mr RAHAMAN, Ushak (IIT Bombay)

Co-authors: Mr PRAKASH, Suprabh (IIT Bombay); Mr SANKHAGIRI, Uma Sankar (IIT Bombay)

Presenter: Mr RAHAMAN, Ushak (IIT Bombay)

Track Classification: Neutrino Oscillation Physics