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Introduction

Full Luminosity Neutrino Factory

Use a single 2000 km
baseline with 10 GeV
stored µ±

Neutrinos from a
cooled muon beam

Known flavour
content
Known energy
distribution
Reduced beam
uncertainties (< 1%)

Magnetized detector
needed for charge
separation.
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Introduction

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

Store µ+ Store µ−

Golden Channel νe → νµ ν̄e → ν̄µ
νe Disappearance Channel νe → νe ν̄e → ν̄e
Silver Channel νe → ντ ν̄e → ν̄τ

Platinum Channel ν̄µ → ν̄e νµ → νe
νµ Disappearance Channel ν̄µ → ν̄µ νµ → νµ
Dominant Oscillation ν̄µ → ν̄τ νµ → ντ

We know a

sin2 2θ13 = 0.095± 0.010
sin2 2θ12 = 0.857± 0.024
θ24 > 0.95
∆m2

12 = (7.65±0.20)×10−5eV 2

∆m2
23 = (2.32+0.12

−0.08)× 10−3eV 2

Effect of δCP on NF spectrum from
5×1020 stored µ decays/yr shown.

aJ. Beringer et al. (Particle Data Group),
Phys. Rev. D86, 010001 (2012)

νµ CC interaction rate with perfect 100 kt detector
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ν̄µ CC interaction rate with perfect 100 kt detector
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Simulation and Reconstruction

MIND: A Magnetized Iron Neutrino Detector

Octagonal cross-section
14×14 m2

Fe plates 3 cm thick
Space points from paired array
of Scint bars 3×1 cm2

Toroidal magnetic field in steel.
Field induced by 100 kA-turns.
Current carried by multiple
turns of STL through detector
axis.a

aIDS-NF-020, Interim Design Report
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Simulation and Reconstruction

MIND Simulation

Events simulated using
GENIE.

Detector simulated using GEANT4.
Events products propagated
through detector volume.
Energy deposition recorded in
2 cm thick scintillator plane.

CHAPTER 6. THE GOLDEN CHANNEL OSCILLATION SIGNAL WITH A
MAGNETISED IRON NEUTRINO DETECTOR
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Figure 6.6: The digitization and voxel clustering of an example event: (top left) bending
plane view, (top right) non bending plane, (bottom) an individual scintillator plane. The
individual hits are small dots (in red), the blue squares are the voxels and the black asterisks
represent the centroid positions of the clusters.

85

Simple digitization applied to events.

Deposition grouped into 3×3 cm2 voxels.
5 m attenuation length applied to energy.
Smearing applied to hit position.a

aarxiv:1208.2735
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Simulation and Reconstruction

Muon Reconstruction within MIND

Position Pull
pullx

Entries  946891

Mean   -0.004073

RMS      1.93

 / ndf 2χ  1.814e+04 / 82

Constant  1.370e+02± 9.685e+04 

Mean      0.001866± -0.001779 

Sigma     0.002± 1.798 
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Constant  1.370e+02± 9.685e+04 

Mean      0.001866± -0.001779 

Sigma     0.002± 1.798 

Direction Pull
pulldy

Entries  945338

Mean   0.0006489

RMS       1.7

 / ndf 2χ  1.321e+04 / 83

Constant  1.630e+02± 1.204e+05 

Mean      0.00150± 0.00207 

Sigma     0.001± 1.452 
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Trajectories identified using Kalman filter.
Multiple trajectories identified per event.
Helix fit to trajectory with Kalman fit
(x , y , ∂x

∂z ,
∂y
∂z ,

q
p ).

Longest trajectory selected as the muon.
Energy reconstructed as Eν = Eµ + Ehad
or using Quasi elastic approximation.

Curvature Pull
pullp

Entries  946713

Mean   -0.8557

RMS     1.593

 / ndf 2χ  4.124e+04 / 83

Constant  2.170e+02± 1.485e+05 

Mean      0.0012± -0.8431 

Sigma     0.001± 1.143 
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Momentum Resolution
 / ndf 2χ  39.22 / 11

q0        0.0131± 0.2799 
q1        0.03053± -0.07012 
q2        0.03418± 0.08661 
q3        0.0020± -0.0269 
q4        0.000109± 0.001416 
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Analysis

Event Selection

Must select νµ(ν̄µ) CC events from
backgrounds

NC events
Charge misidentified νµ(ν̄µ) CC
events.
Flavour misidentified νe and ντ
events.

Suppression <0.1% is required.
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Quantities for Event Selection

Number of hits in event.

Quality of track fit

Mean energy deposited in track.

Variation in energy deposition along track

Separation between muon and hadron.
R. Bayes (University of Glasgow) MIND NUFACT, August 2013 8 / 15



Analysis

Event Selection

Must select νµ(ν̄µ) CC events from
backgrounds

NC events
Charge misidentified νµ(ν̄µ) CC
events.
Flavour misidentified νe and ντ
events.

Suppression <0.1% is required.
 1

 10

 100

 1000

 10000

 0  2  4  6  8  10

N
eu

tr
in

o 
In

te
ra

ct
io

ns
 p

er
 2

50
 M

eV

Neutrino Energy (GeV)

--νµ CC, δCP = -90 degrees
--νµ CC, δCP =    0 degrees
--νµ CC, δCP =  90 degrees

νµ CC Background
νµ NC Background

/(q/p)q/pσ
-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

ba
bi

lit
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 CC Signalµν
 CC mis-ID Backgroundµν
 NC Backgroundµν
 CC Backgroundeν
 CC Contaminationτν
 CC Backgroundτν

Quantities for Event Selection

Number of hits in event.

Quality of track fit

Mean energy deposited in track.

Variation in energy deposition along track

Separation between muon and hadron.
R. Bayes (University of Glasgow) MIND NUFACT, August 2013 8 / 15



Analysis

Event Selection

Must select νµ(ν̄µ) CC events from
backgrounds

NC events
Charge misidentified νµ(ν̄µ) CC
events.
Flavour misidentified νe and ντ
events.

Suppression <0.1% is required.
 1

 10

 100

 1000

 10000

 0  2  4  6  8  10

N
eu

tr
in

o 
In

te
ra

ct
io

ns
 p

er
 2

50
 M

eV

Neutrino Energy (GeV)

--νµ CC, δCP = -90 degrees
--νµ CC, δCP =    0 degrees
--νµ CC, δCP =  90 degrees

νµ CC Background
νµ NC Background

 E (MeV)∆Mean 
0 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

0

0.01

0.02

0.03

0.04

0.05

0.06
 CC Signalµν
 CC mis-ID Backgroundµν
 NC Backgroundµν
 CC Backgroundeν
 CC Contaminationτν
 CC Backgroundτν

Quantities for Event Selection

Number of hits in event.

Quality of track fit

Mean energy deposited in track.

Variation in energy deposition along track

Separation between muon and hadron.
R. Bayes (University of Glasgow) MIND NUFACT, August 2013 8 / 15



Analysis

Event Selection

Must select νµ(ν̄µ) CC events from
backgrounds

NC events
Charge misidentified νµ(ν̄µ) CC
events.
Flavour misidentified νe and ντ
events.

Suppression <0.1% is required.
 1

 10

 100

 1000

 10000

 0  2  4  6  8  10

N
eu

tr
in

o 
In

te
ra

ct
io

ns
 p

er
 2

50
 M

eV

Neutrino Energy (GeV)

--νµ CC, δCP = -90 degrees
--νµ CC, δCP =    0 degrees
--νµ CC, δCP =  90 degrees

νµ CC Background
νµ NC Background

 E∆Fractional Variation in 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
 CC Signalµν
 CC mis-ID Backgroundµν
 NC Backgroundµν
 CC Backgroundeν
 CC Contaminationτν
 CC Backgroundτν

Quantities for Event Selection

Number of hits in event.

Quality of track fit

Mean energy deposited in track.

Variation in energy deposition along track

Separation between muon and hadron.
R. Bayes (University of Glasgow) MIND NUFACT, August 2013 8 / 15



Analysis

Event Selection

Must select νµ(ν̄µ) CC events from
backgrounds

NC events
Charge misidentified νµ(ν̄µ) CC
events.
Flavour misidentified νe and ντ
events.

Suppression <0.1% is required.
 1

 10

 100

 1000

 10000

 0  2  4  6  8  10

N
eu

tr
in

o 
In

te
ra

ct
io

ns
 p

er
 2

50
 M

eV

Neutrino Energy (GeV)

--νµ CC, δCP = -90 degrees
--νµ CC, δCP =    0 degrees
--νµ CC, δCP =  90 degrees

νµ CC Background
νµ NC Background

 (GeV)
t

Energy Transfer Q
0 1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14  CC Signalµν
 CC mis-ID Backgroundµν
 NC Backgroundµν
 CC Backgroundeν
 CC Contaminationτν
 CC Backgroundτν

Quantities for Event Selection

Number of hits in event.

Quality of track fit

Mean energy deposited in track.

Variation in energy deposition along track

Separation between muon and hadron.
R. Bayes (University of Glasgow) MIND NUFACT, August 2013 8 / 15



Analysis

Multivariate Analysis for Event Selection
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Five variables with potential correlations used.
Adopted TMVA package.
Multiple methods tested i.e. Boosted Decision Trees
(BDT), k-Nearest Neighbour (KNN), etc.
Train CC (signal) to NC (background) separately for
stored µ+ and µ−.
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Analysis

Efficiencies and Backgrounds in MIND
Efficiency
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Analysis

Expected Rates
Det. response for νµCC sample
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10 GLoBeS package used to turn Det.
response into detector rates
Assume 100 kt detector, 2000 km
baseline.
Use 5×1020 µ+/yr and 5×1020 µ−/yr
Assume 10 years running.
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Analysis

Expected Rates
Det. response for νµCC sample
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Analysis

Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

Simulations done with CRY generator in GEANT4 detector.
Identical reconstruction and event selection done.
Apply self vetoing fiducial cuts at 30 cm.
Detector will need overburden.
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Physics Sensitivity

Precision of CP Violation
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Physics Sensitivity

Systematics Explorations
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Conclusions

Summary

Development of simulation and reconstruction for MIND at a
neutrino factory is coming to a conclusion.
Improved reconstruction and event selection algorithms have
been introduced

multiple track reconstruction
multivariate analysis for event selection

High efficiency achieved while rejecting background at parts in 103

Can achieve precision in δCP between 4◦ and 5◦
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