MIND:
 A Detector for Probing CP Violation at a Neutrino Factory

R. Bayes

University of Glasgow, on behalf of the IDS-NF collaboration

NUFACT 2013

21 August, 2013

(1) Introduction
(2) Simulation and Reconstruction
(3) Analysis

4 Physics Sensitivity
(5) Conclusions

Full Luminosity Neutrino Factory

- Use a single 2000 km baseline with 10 GeV stored $\mu^{ \pm}$
- Neutrinos from a cooled muon beam
- Known flavour content
- Known energy distribution
- Reduced beam uncertainties (< 1%)
- Magnetized detector needed for charge separation.

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

	Store μ^{+}	Store μ^{-}
Golden Channel	$\nu_{e} \rightarrow \nu_{\mu}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$
ν_{e} Disappearance Channel	$\nu_{e} \rightarrow \nu_{e}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
Silver Channel	$\nu_{e} \rightarrow \nu_{\tau}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau}$
Platinum Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$
ν_{μ} Disappearance Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$
Dominant Oscillation	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}$	$\nu_{\mu} \rightarrow \nu_{\tau}$

- We know ${ }^{a}$
- $\sin ^{2} 2 \theta_{13}=0.095 \pm 0.010$
- $\sin ^{2} 2 \theta_{12}=0.857 \pm 0.024$
- $\theta_{24}>0.95$
- $\Delta m_{12}^{2}=(7.65 \pm 0.20) \times 10^{-5} \mathrm{eV}^{2}$
- $\Delta m_{23}^{2}=\left(2.32_{-0.08}^{+0.12}\right) \times 10^{-3} \mathrm{eV}^{2}$
- Effect of $\delta_{C P}$ on NF spectrum from 5×10^{20} stored μ decays/yr shown.
${ }^{a} \mathrm{~J}$. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)
$\nu_{\mu} \mathrm{CC}$ interaction rate with perfect 100 kt detector

$\bar{\nu}_{\mu}$ CC interaction rate with perfect 100 kt detector

MIND: A Magnetized Iron Neutrino Detector

- Octagonal cross-section $14 \times 14 \mathrm{~m}^{2}$
- Fe plates 3 cm thick
- Space points from paired array of Scint bars $3 \times 1 \mathrm{~cm}^{2}$
- Toroidal magnetic field in steel.
- Field induced by 100 kA-turns.
- Current carried by multiple turns of STL through detector axis. ${ }^{a}$

[^0]

MIND Simulation

- Events simulated using GENIE.

Detector simulated using GEANT4.

- Events products propagated through detector volume.
- Energy deposition recorded in 2 cm thick scintillator plane.

R. Bayes (University of Glasgow)

Simple digitization applied to events.

- Deposition grouped into $3 \times 3 \mathrm{~cm}^{2}$ voxels.
- 5 m attenuation length applied to energy.
- Smearing applied to hit position. ${ }^{a}$

$$
{ }^{\text {a arxiv:1 }} 1208.2735
$$

Muon Reconstruction within MIND

Position Pull

R. Bayes (University of Glasgow)

- Trajectories identified using Kalman filter.
- Multiple trajectories identified per event.
- Helix fit to trajectory with Kalman fit $\left(x, y, \frac{\partial x}{\partial z}, \frac{\partial y}{\partial z}, \frac{q}{p}\right)$.
- Longest trajectory selected as the muon.
- Energy reconstructed as $E_{\nu}=E_{\mu}+E_{\text {had }}$ or using Quasi elastic approximation.

Curvature Pull

Momentum Resolution

Event Selection

- Must select $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events from backgrounds
- NC events
- Charge misidentified $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events.
- Flavour misidentified ν_{e} and ν_{τ} events.

- Suppression $<0.1 \%$ is required.

Quantities for Event Selection

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Event Selection

- Must select $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events from backgrounds
- NC events
- Charge misidentified $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events.
- Flavour misidentified ν_{e} and ν_{τ} events.

- Suppression $<0.1 \%$ is required.

R. Bayes (University of Glasgow)

Event Selection

- Must select $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events from backgrounds
- NC events
- Charge misidentified $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events.
- Flavour misidentified ν_{e} and ν_{τ} events.

- Suppression $<0.1 \%$ is required.

R. Bayes (University of Glasgow)

Event Selection

- Must select $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events from backgrounds
- NC events
- Charge misidentified $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events.
- Flavour misidentified ν_{e} and ν_{τ} events.

- Suppression $<0.1 \%$ is required.

R. Bayes (University of Glasgow)

Event Selection

- Must select $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events from backgrounds
- NC events
- Charge misidentified $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ CC events.
- Flavour misidentified ν_{e} and ν_{τ} events.

- Suppression $<0.1 \%$ is required.

Quantities for Event Selection

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Multivariate Analysis for Event Selection

- Five variables with potential correlations used.
- Adopted TMVA package.
- Multiple methods tested i.e. Boosted Decision Trees (BDT), k-Nearest Neighbour (KNN), etc.
- Train CC (signal) to NC (background) separately for stored μ^{+}and μ^{-}.

Efficiencies and Backgrounds in MIND

Efficiency

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
- Compare BDT to KNN

Background (stored μ^{-})

Background (stored μ^{+})

Efficiencies and Backgrounds in MIND

Efficiency

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
- Compare BDT to KNN

Background (stored μ^{-})

Background (stored μ^{+})

Expected Rates

Det. response for $\nu_{\mu} C C$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- Use $5 \times 10^{20} \mu^{+} / \mathrm{yr}$ and $5 \times 10^{20} \mu^{-} / \mathrm{yr}$
- Assume 10 years running.

Rate in detector for stored μ^{-}

Rate in detector for stored μ^{+}

NUFACT, August 2013

Expected Rates

Det. response for $\nu_{\mu} C C$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- Use $5 \times 10^{20} \mu^{+} / \mathrm{yr}$ and $5 \times 10^{20} \mu^{-} / \mathrm{yr}$
- Assume 10 years running.

Rate in detector for stored μ^{-}

Rate in detector for stored μ^{+}

NUFACT, August 2013

Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

- Simulations done with CRY generator in GEANT4 detector.
- Identical reconstruction and event selection done.
- Apply self vetoing fiducial cuts at 30 cm .
- Detector will need overburden.

Events in Detector

Stored μ^{+}		
Signal	17802	
Bkgd	298	
Cosmics	261370	
Stored μ^{-}		

Signal	3166
Bkgd	244
Cosmics	73169

Precision of CP Violation

- Method choice affects background rejection.
- Background affects result weakly.
- Assume
- 1.4\% Signal systematic uncertainty (Flux \times Cross-Section)
- 20\% Background systematic uncertainty (Ditto).
- Preferred MVA (BDT) shows precision between 4° and 5°.

KNN Method

Systematics Explorations

- Consider the case of no improvement in systematic uncertainties
- Signal systematic: 4%
- Background systematic: 40\%
- $\Delta \delta_{C P}$ between 6° and 10°.

- Consider analysis systematic.
- Increase the threshold on BDT cut so that $S / \sqrt{S+B}$ increases by 1 .
- Small change $\left(<0.1^{\circ}\right)$ in precision.

Summary

- Development of simulation and reconstruction for MIND at a neutrino factory is coming to a conclusion.
- Improved reconstruction and event selection algorithms have been introduced
- multiple track reconstruction
- multivariate analysis for event selection
- High efficiency achieved while rejecting background at parts in 10^{3}
- Can achieve precision in $\delta_{C P}$ between 4° and 5°

[^0]: ${ }^{\text {a }}$ IDS-NF-020, Interim Design Report

