MIND: A Detector for Probing CP Violation at a Neutrino Factory

R. Bayes

University of Glasgow, on behalf of the IDS-NF collaboration

Experimental Particle Physics NUFACT 2013 21 August, 2013

2 Simulation and Reconstruction

5 Conclusions

Full Luminosity Neutrino Factory

- Use a single 2000 km baseline with 10 GeV stored μ^{\pm}
- Neutrinos from a cooled muon beam
 - Known flavour content
 - Known energy distribution
 - Reduced beam uncertainties (< 1%)
- Magnetized detector needed for charge separation.

Introduction

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

	Store μ^+	Store μ^-
Golden Channel	$\nu_{\theta} \rightarrow \nu_{\mu}$	$\bar{\nu}_{\theta} \rightarrow \bar{\nu}_{\mu}$
ν_e Disappearance Channel	$\nu_{\theta} \rightarrow \nu_{\theta}$	$\bar{\nu}_{\theta} \rightarrow \bar{\nu}_{\theta}$
Silver Channel	$\nu_{\theta} \rightarrow \nu_{\tau}$	$\bar{\nu}_{\theta} \rightarrow \bar{\nu}_{\tau}$
Platinum Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\theta}$	$\nu_{\mu} \rightarrow \nu_{\theta}$
ν_{μ} Disappearance Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$
Dominant Oscillation	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}$	$\nu_{\mu} \rightarrow \nu_{\tau}$

• We know ^a

- $\sin^2_2 2\theta_{13} = 0.095 \pm 0.010$
- $\sin^2 2\theta_{12} = 0.857 \pm 0.024$
- θ₂₄ > 0.95

•
$$\Delta m_{12}^2 = (7.65 \pm 0.20) \times 10^{-5} eV^2$$

- $\Delta m_{23}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} eV^2$
- Effect of δ_{CP} on NF spectrum from 5×10^{20} stored μ decays/yr shown.

^aJ. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

u_{μ} CC interaction rate with perfect 100 kt detector

$\bar{ u}_{\mu}$ CC interaction rate with perfect 100 kt detector

Simulation and Reconstruction

MIND: A Magnetized Iron Neutrino Detector

- Toroidal magnetic field in steel.
- Field induced by 100 kA-turns.
- Current carried by multiple turns of STL through detector axis.^a

^aIDS-NF-020, Interim Design Report

- Octagonal cross-section 14×14 m²
- Fe plates 3 cm thick
- Space points from paired array of Scint bars 3×1 cm²

MIND Simulation

• Events simulated using GENIE.

Detector simulated using GEANT4.

- Events products propagated through detector volume.
- Energy deposition recorded in 2 cm thick scintillator plane.

Simple digitization applied to events.

- Deposition grouped into 3×3 cm² voxels.
- 5 m attenuation length applied to energy.
- Smearing applied to hit position.^a

^aarxiv:1208.2735

Muon Reconstruction within MIND

- Trajectories identified using Kalman filter.
- Multiple trajectories identified per event.
- Helix fit to trajectory with Kalman fit $(x, y, \frac{\partial x}{\partial z}, \frac{\partial y}{\partial z}, \frac{q}{p}).$
- Longest trajectory selected as the muon.
- Energy reconstructed as $E_{\nu} = E_{\mu} + E_{had}$ or using Quasi elastic approximation.

Direction Pull

Curvature Pull

-20 -15 -10

Momentum Resolution

R. Bayes (University of Glasgow)

10 -5 MINI 0 5 10 15

Momentum Pul

Event Selection

- Must select $\nu_{\mu}(\bar{\nu}_{\mu})$ CC events from backgrounds
 - NC events
 - Charge misidentified ν_μ(ν
 _μ) CC events.
 - Flavour misidentified ν_e and ν_τ events.
- Suppression <0.1% is required.

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Event Selection

- Must select $\nu_{\mu}(\bar{\nu}_{\mu})$ CC events from backgrounds
 - NC events
 - Charge misidentified ν_μ(ν
 _μ) CC events.
 - Flavour misidentified ν_e and ν_τ events.
- Suppression <0.1% is required.

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Event Selection

- Must select $\nu_{\mu}(\bar{\nu}_{\mu})$ CC events from backgrounds
 - NC events
 - Charge misidentified ν_μ(ν
 _μ) CC events.
 - Flavour misidentified ν_e and ν_τ events.
- Suppression <0.1% is required.

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Event Selection

- Must select $\nu_{\mu}(\bar{\nu}_{\mu})$ CC events from backgrounds
 - NC events
 - Charge misidentified ν_μ(ν
 _μ) CC events.
 - Flavour misidentified ν_e and ν_τ events.
- Suppression <0.1% is required.

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Event Selection

- Must select $\nu_{\mu}(\bar{\nu}_{\mu})$ CC events from backgrounds
 - NC events
 - Charge misidentified ν_μ(ν
 _μ) CC events.
 - Flavour misidentified ν_e and ν_τ events.
- Suppression <0.1% is required.

- Number of hits in event.
- Quality of track fit
- Mean energy deposited in track.
- Variation in energy deposition along track
- Separation between muon and hadron.

Multivariate Analysis for Event Selection

- Five variables with potential correlations used.
- Adopted TMVA package.
- Multiple methods tested i.e. Boosted Decision Trees (BDT), k-Nearest Neighbour (KNN), etc.
- Train CC (signal) to NC (background) separately for stored μ^+ and $\mu^-.$

.

Efficiencies and Backgrounds in MIND

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
 - Compare BDT to KNN

Background (stored μ^-)

Background (stored μ^+)

Efficiencies and Backgrounds in MIND

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
 - Compare BDT to KNN

Background (stored μ^-)

Background (stored μ^+)

Expected Rates

Det. response for $\nu_{\mu} CC$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- $\bullet~$ Use 5 $\times 10^{20}~\mu^{+}/{\rm yr}$ and 5 $\times 10^{20}~\mu^{-}/{\rm yr}$
- Assume 10 years running.

Rate in detector for stored μ^-

R. Bayes (University of Glasgow)

Expected Rates

Det. response for $\nu_{\mu} CC$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- $\bullet~$ Use 5 $\times 10^{20}~\mu^{+}/{\rm yr}$ and 5 $\times 10^{20}~\mu^{-}/{\rm yr}$
- Assume 10 years running.

Rate in detector for stored μ^-

Rate in detector for stored μ^+

Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

- Simulations done with CRY generator in GEANT4 detector.
- Identical reconstruction and event selection done.
- Apply self vetoing fiducial cuts at 30 cm.
- Detector will need overburden.

Precision of CP Violation

150 100

50

Background affects result weakly.

Assume

- 1.4% Signal systematic uncertainty (Flux× Cross-Section)
- 20% Background systematic uncertainty (Ditto).
- Preferred MVA (BDT) shows precision between 4° and 5° .

KNN Method

Systematics Explorations

- Signal systematic: 4%
- Background systematic: 40%
- $\Delta \delta_{CP}$ between 6° and 10°.

- Consider analysis systematic.
- Increase the threshold on BDT cut so that $S/\sqrt{S+B}$ increases by 1.
- Small change (< 0.1°) in precision.

Summary

- Development of simulation and reconstruction for MIND at a neutrino factory is coming to a conclusion.
- Improved reconstruction and event selection algorithms have been introduced
 - multiple track reconstruction
 - multivariate analysis for event selection
- High efficiency achieved while rejecting background at parts in 10³
- Can achieve precision in δ_{CP} between 4° and 5°

< ロ > < 同 > < 回 > < 回 >