

The Mu2e experiment

Zhengyun You University of California, Irvine (for the Mu2e Collaboration) 08/21/2013

- Physics
 - CLFV
 - Muon-to-electron conversion
- The Mu2e experiment at Fermilab
 - Detector setup
 - Signal & background
 - Sensitivity
- Schedule and Future
- Summary

NuFact 2013

- Lepton flavor is violated in neutrino mixings
- Charged lepton mixing is strongly suppressed in the Standard Model, un-observably small
- Any observation of CLFV would be new physics Beyond Standard Model (BSM)

Zhengyun You, University of California, Irvine

New Physics in $\mu \rightarrow e$ Conversion

Flavor physics of leptons and dipole moments, arXiv:0801.1826

Zhengyun You, University of California, Irvine

Probing new physics with CLFV

 $L = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \overline{\mu} R \sigma_{\mu\nu} e_L F_{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L$

Effective Lagrangian

- Contact κ , mass scale Λ
- 'Loops', charged Higgs model, $\kappa <<1$, can be probed by $\mu \rightarrow e\gamma$
- Contact terms', direct coupling between quarks and leptons, κ>>1, only accessible by μN→eN
- Probe mass scales Λ 2000~10000 TeV, significantly above the direct reach of LHC

What we measure

• The ratio of muon to electron conversions to conventional muon captures

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$$

- Signal: Neutrinoless conversion of a muon to electron in the field of a nucleus
- Experimental signature
 - Mono-energetic electron
 - $E_e = m_{\mu} E_{bind} E_{recoil}$
 - For AI, $E_e = 104.97$ MeV

Measurement : Electron energy spectra

Signal

Conversion electrons with energy at Decay in Orbit (DIO) endpoint 104.97 MeV

- Background
 - Muon decay in orbit $\mu^- + Al \rightarrow e^- + v_e + v_\mu + Al$
 - Radiative muon capture
 - $\mu^- + Al \to \upsilon_\mu + \gamma + Mg$
 - Radiative pion capture $\pi^- N \rightarrow \gamma N^*, \gamma \rightarrow e^+ e^ \pi^- N \rightarrow e^+ e^- N^*$
 - Antiprotons annihilation gamma
 - Pion/muon decay in flight
 - Electrons from beam
 - Electrons from Cosmic rays

NuFact 2013

Zhengyun You, University of California, Irvine

Czarnecki et al., Phys. Rev. D 84, 013006 (2011) arXiv:1106.4756v2

- Current best limits
 - $\begin{array}{l} \ \mathsf{R}_{\mu e} \, (\mathrm{Ti}) \ < 4.3 \ \mathrm{x} \ 10^{\text{-}12} \\ \ \mathsf{R}_{\mu e} \, (\mathrm{Au}) < 7 \ \mathrm{x} \ 10^{\text{-}13} \end{array}$
- Simulated signal at DIO tails
- Au target: different electron energy endpoint than Al

W. Bertl et al, Eur. Phys. J. C 47, 337-346 (2006)

µ→eγ

- Signal particles ≤ 53 MeV
 - high background region
- Signal: combination of particles
 - Bkg rejection: cuts on combination
 - Accidental coincidences limit usable muon rate
- Continuous beam
- µ+
 - Capture rates: $\Gamma_{\mu+} = 0$

µN→eN

- Signal particle at 105 MeV
 - Away from Michel peak
- Signal: single track
 - Fewer handles to reject background
 - Coincidences not a problem
- Use pulsed beam
 - suppress background between pulses
- Need cosmic ray veto
- µ-
 - Capture rates: $\Gamma_{\mu} \sim Z^4$
 - Potential background

- Goal: To search for the conversion of $\mu N \rightarrow eN$ in the field of Aluminum nucleus
- Sensitivity of Branching Fraction
 - Single event sensitivity: $R_{\mu e} = 2.5 \times 10^{-17} (6 \times 10^{-17} @ 90\% C.L.)$
- Statistics
 - Requires ~10¹⁸ stopped muons
 - Requires ~3.6 x10²⁰ protons on target
 - 3 years data taking
- Requires background events to be negligible (<1)
- Location: Fermi National Acceleratory Laboratory (FNAL)
- Schedule: expect to start commissioning & data taking in 2020

The Mu2e Collaboration

Boston University Brookhaven National Laboratory Lawrence Berkeley National Laboratory & University of California, Berkeley University of California, Irvine California Institute of Technology City University of New York **Duke University** Fermi National Accelerator Laboratory University of Houston University of Illinois, Urbana-Champaign Lewis University University of Massachusetts, Amherst Muons, Inc. Northern Illinois University Northwestern University Pacific Northwest National Laboratory **Rice University** University of Virginia University of Washington

INFN Lecce/Università del Salento INFN Lecce/Università Marconi INFN Pisa Universita di Udine, Udine Laboratori Nazionali di Frascati

Institute for Nuclear Research, Moscow Joint Institute for Nuclear Research, Dubna

26 institutions ~140 collaborators

NuFact 2013

Zhengyun You, University of California, Irvine

Proton Delivery & Muon Campus

- 8 GeV proton beams
- 3x10⁷ protons per bunch
- Bunch spacing 1.7 µs
- 30% duty factor
- Run after g-2
- Shared with NOVA

Zhengyun You, University of California, Irvine

Overview of Mu2e Design

- Production Solenoid / Target
 - Protons hitting target and produce pions
 - Solenoid reflect slow forward μ/π and contains backward μ/π
- Transport Solenoid
 - Filter low momentum μ^{-}
- Stopping Target, Detector Solenoid and Detectors
 - Stop μ^{-} on AI foils and wait for them to decay
 - Events reconstructed by tracker and calorimeter, optimized for 105MeV.

Production Solenoid

- To maximize muon yield
- The axially graded magnetic field reflects slow pions/muons towards the TS direction
- 3 coils with 2 or 3 layers

Target and Heat Radiation Shield

- Production Target
 - Protons striking target produce pions, which decay into muons
 - High A and high density material Tungsten to maximize muons production
 - High melting temp, radiative cooling (~1600°C), with 8kW beam (700w in target)
- Heat Radiation Shield
 - To protect superconductor of PS and upstream TS
 - To limit heat load and radiation damage
 - ~25 tons of Bronze

Transport Solenoid

- Gradient magnetic field from 2.5 T to 2.0 T
- S-shaped magnetic channel to transmit low-momentum negatively charged particles in helical trajectories
- D-shaped collimators to remove positively charged and high-momentum particles

Detector Solenoid

- Stopping target to stop muons
- Graded magnetic field from 2 T to 1 T, captures conversion electrons with bigger acceptance, shifts the pitch of beam particles to reduce background
- Tracker and Calorimeter in a uniform field to reconstruct and identify electrons
- Vacuum in DS to limit background from muons stopped on gas atoms

Stopping Target

- µ⁻ stopped in thin foils and form muonic atoms
- μ^{-} in AI, life time = 864 ns
- Conversion electrons signal energy ~105 MeV

- 17 circular aluminum foils
- 200 µm thick, spaced 50 mm
- Currently stop ~49% muons
- Geometry under optimization

- From two designs: T tracker / I tracker, T tracker is selected
- 3 m long, 1.4 m diameter, in a uniform 1 T magnetic field
- Made of 21,600 straw drift tubes, 18 stations, 2 planes/station
- Each straw 5 mm diameter, 25 µm sense wire, 15 µm mylar walls
- Custom ASIC for Time Division Readout, Δt resolution < 50 ps
- ADC for dE/dx capability to separate highly ionizing protons.

Tracks in one pulse

all tracks in search window of a proton pulse

- Quite challenging to find the conversion electron
- Good tracker performance and pattern recognition algorithm critical

Track Reconstruction

- Measure trajectories of conversion electrons, most low-momentum DIO electrons curl in the field and pass through the hole in DS
- Find tracks using time clustering plus pattern recognition algorithm
- Fit Track using Kalman filter

Calorimeter

- Provides independent energy, time and position measurements
- Helps to eliminate backgrounds and provides a cross check to verify the validity of signal events.
- Disk structure is selected from two designs: Vane / Disk
- Two disks composed of hexagonal LYSO crystals
- Charge symmetric, can measure $\mu^- N \rightarrow e^+ N'$

Calorimeter

- Particle Identification
 - Geometrical acceptance for events passing tracker cuts >95%
 - Combine distribution in ΔT and E/P to build a particle ID likelihood
 - Calorimeter + Tracker PID
 - Electron efficiency >99%
 - Muon rejection in the range $10^2 10^3$
- To reject cosmic background
- Provides alternative seed for track finding algorithm
- Provide independent trigger, reducing requirements on DAQ

Cosmic Ray Veto

- Cosmic rays is a major sources of background
 - Muons hitting stopping target or DS materials, generating delta rays
 - Muons decay into electrons
- CRV are composed of 3 layers overlapping scintillators, placed around DS and part of TS area
- Requires 0.9999 efficiency to achieve proposed background rejection
 NuFact 2013 Zhengyun You, University of California, Irvine

Neutron and Photon Background

- Neutrons can be produced in production target, HRS, collimators...
- Neutrons have radiation damages to SIPMs and make fake hits on detectors
- Neutrons get thermalized, captured and produce gammas
- Shielding with Barite loaded concrete, polyethylene in TS and DS area
- Geometry under optimization

Calibration tools provide cross check and corrections for detector description (magnetic field, material, geometry, alignment, ...)

Tracker Calibration

- Requires absolute momentum (Δ<100KeV/c) to separate DIO background from conversion electrons
- Calibrate with π⁺→e⁺v_e events at ~70 MeV/c
- Calibrate by fitting the Michel edge with $\mu^+ \rightarrow e^+ v_e \overline{v_{\mu}}$ events at ~53 MeV/c
- Both requires special beam, detector and magnetic field configuration
- Calibrate by fitting DIO spectrum and cosmic electron resolution study

Calorimeter Calibration

- Requires energy precision δ_E<2% at 100 MeV
- Source calibration system with 6.13 MeV photons
- Calibration with cosmic ray muons
- DIO events give a very precise calibration and can be compared with tracker, if enough data has been taken.

Timing in Mu2e measurement

- A proton beam bunch hits on production target
- Generate pulsed beam of low momentum μ^{-}
- μ^{-} captured on stopping target to form muonic atoms
- Wait for prompt backgrounds to decay
- Select tracks in search window, when π^{-} disappear

Proton beam extinction

- Beam extinction = (# protons between pulses) / (# protons in pulses)
- Protons produced between two pulses generate additional background
- Important for beam related background rejection

Extinction Monitor Design

Scintillator based

- 4 layers scintillator counters
- Detect particles ~ 1GeV/c
- Measure time of flight for different particles
- Track reconstruction from time of flight between layers

Silicon pixel detector based

- 8 planes pixel detectors
- Detect particles 3~4 GeV/c
- Measure track hits position and reconstruct
- Selected for Mu2e
- More details in next talk

Dominant Background

- 1. Muon Decay-in-orbit (DIO)
 - Electron energy $E_{\mu e} = m_{\mu} E_{b} E_{rec}$ Binding energy $E_{b} \sim Z^{2} \alpha^{2} m_{\mu}/2$ Nuclear Recoil energy $E_{rec} \sim m_{\mu}^{2}/(2m_{N})$
 - DIO Rate ~ $(E_{MAX} E_e)^5$, $E_{MAX} \sim 105 \text{ MeV}$
 - Requires good energy resolution

Other Backgrounds

- 2. Beam Related Background
 - μ/π free decay in flight
 - Radiative π capture
 - Beam electrons
 - Beam extinction monitor to suppress protons between pulses < 10⁻¹⁰
- 3. Anti-protons annihilation
 - Thin Be-window placed at TS center to stop anti-protons
- 4. Background from cosmic rays
 - Electrons generated by cosmic $\boldsymbol{\mu}$ interaction
 - Time window and shielding from overburden & side
 - Cosmic ray veto with inefficiency $< 10^{-4}$

Full Geant4 simulation, background overlay and reconstruction

Background & Sensitivity

Category	Source	Events	Error
Muon-Induced	μ decay in orbit	0.20	±0.06
	radiative π capture	0.04	±0.02
Prompt	Beam electrons	0.001	±0.001
	μ decay in flight	0.01	±0.005
Miscellaneous	Anti-proton induced	0.10	±0.05
	Cosmic ray induced	0.05	±0.013
Total		0.4	0.1

Preliminary Values

Backgrounds for 3 years run

Single event sensitivity $R_{\mu e} = 2.5 \times 10^{-17}$ 90% C.L. (if no signal) $R_{\mu e} < 6 \times 10^{-17}$

Mu2e Schedule

Start construction in 20
Start running in 2020

NuFact 2013

Project X

- A proposed new high intensity proton linac at Fermilab
- 3 phases, compelling physics opportunities at each stage:
 - Neutrinos, Kaons, Muons, nucleons, and atomic probes
- Programmable pulse structure for many experiments

Mu2e at Project X

- CLFV is a good window to probe new physics beyond Standard Model with energy scale up to thousands of TeV
- Mu2e will search for CLFV in the process of $\mu N \rightarrow eN$
 - The goal is to achieve SES $R_{\mu e} = 2.5 \times 10^{-17}$
 - 4 orders of magnitude improvement to current limit
- The Mu2e project is well on-going
 - Conceptual design completed (DOE CD-1 in 7/2012)
 - Technical design to be completed in 2014
 - Start construction in 2015
 - Expect to start running in 2020
 - Project X could further improve the study in CLFV.

- Home page: <u>http://mu2e.fnal.gov</u>
- CDR: <u>http://arxiv.org/abs/1211.7019</u>
- Document Database:
 - <u>http://mu2e-docdb.fnal.gov/cgi-bin/DocumentDatabase</u>
 - Conference presentations
- Project X:
 - Accelerator Reference Design: physics.acc-phil306.5022
 - Physics Opportunities: <u>hep-ex:1306.5009</u>
 - Broader Impacts: <u>physics.acc-ph:1306.5024</u>

Thank you !