Resolving $\boldsymbol{\theta}_{23}$ Octant in Current \& Future Oscillation Facilities

Sanjib Kumar Agarwalla sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

Present Understanding of the 2-3 Mixing Angle

Information on $\boldsymbol{\theta}_{23}$ comes from: a) atmospheric neutrinos and b) accelerator neutrinos
In two-flavor scenario: $\mathrm{P}_{\mu \mu}=1-\sin ^{2} 2 \theta_{\mathrm{eff}} \sin ^{2}\left(\frac{\Delta m_{\mathrm{eff}}^{2} L}{4 E}\right)$
For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$
\begin{gathered}
\Delta m_{\text {eff }}^{2}=\Delta m_{31}^{2}-\Delta m_{21}^{2}\left(\cos ^{2} \theta_{12}-\cos \delta_{\mathrm{CP}} \sin \theta_{13} \sin 2 \theta_{12} \tan \theta_{23}\right) \\
\sin ^{2} 2 \theta_{\text {eff }}=4 \cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\left(1-\cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\right) \text { where } \frac{\left|U_{\mu 3}\right|^{2}}{\left|U_{73}\right|^{2}}=\tan ^{2} \theta_{23}
\end{gathered}
$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining bean and atmospheric data in MINOS, we have:
MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

$$
\sin ^{2} 2 \theta_{\text {eff }}=0.95_{-0.036}^{+0.035}\left(10.71 \times 10^{21} \text { p.o.t }\right) \quad \sin ^{2} 2 \bar{\theta}_{\text {eff }}=0.97_{-0.08}^{+0.03}\left(3.36 \times 10^{21} \text { p.o.t }\right)
$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin ^{2} 2 \theta_{\text {eff }}=1(\geq 0.94$ (90% C.L.))

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

	Forero etal	Fogli etal	Gonzalez-Garcia etal
$\sin ^{2} \theta_{23}(\mathrm{NH})$	$0.427_{-0.027}^{+0.034} \oplus 0.613_{-0.040}^{+0.022}$	$0.386_{-0.021}^{+0.024}$	$0.41_{-0.025}^{+0.037} \oplus 0.59_{-0.022}^{+0.021}$
3σ range	$0.36 \rightarrow 0.68$	$0.331 \rightarrow 0.637$	$0.34 \rightarrow 0.67$
$\sin ^{2} \theta_{23}(\mathrm{IH})$	$0.600_{-0.031}^{+0.026}$	$0.392_{-0.022}^{+0.039}$	Relative $\mathbf{1} \boldsymbol{\sigma}$ precision of $\mathbf{1 1 \%}$
3σ range	$0.37 \rightarrow 0.67$	$0.335 \rightarrow 0.663$	

All the three global fits indicate for non-maximal 2-3 mixing!

In v_{μ} survival probability, the dominant term is mainly sensitive to $\sin ^{2} 2 \theta_{23}$!
If $\sin ^{2} \mathbf{2} \boldsymbol{\theta}_{23}$ differs from 1 (as indicated by recent data), we get two solutions for $\boldsymbol{\theta}_{\mathbf{2 3}}$: one in lower octant (LO: $\boldsymbol{\theta}_{23}<45$ degree), other in higher octant (HO: $\boldsymbol{\theta}_{23}>45$ degree)

In other words, if $\left(0.5-\sin ^{2} \theta_{23}\right)$ is + ve $(-v e)$ then θ_{23} belongs to $\mathrm{LO}(\mathrm{HO})$
This is known as the octant ambiguity of $\boldsymbol{\theta}_{23}$!
Fogli and Lisi, hep-ph/9604415
v_{μ} to v_{e} oscillation data can break this degeneracy!
The preferred value would depend on the choice of the neutrino mass hierarchy!

Octant $-\delta_{C P}$ degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

$$
P_{\mu e}=\beta_{1} \sin ^{2} \theta_{23}+\beta_{2} \cos \left(\hat{\Delta}+\delta_{\mathrm{CP}}\right)+\beta_{3} \cos ^{2} \theta_{23} \text { (upto second order in } \alpha=\Delta_{21} / \Delta_{31} \text { and } \sin 2 \theta_{13} \text {) }
$$

$$
\begin{gathered}
\beta_{1}=\sin ^{2} 2 \theta_{13} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}}, \quad \beta_{3}=\alpha^{2} \sin ^{2} 2 \theta_{12} \cos ^{2} \theta_{13} \frac{\sin ^{2} \hat{\Delta} \hat{A}}{\hat{A}^{2}} \\
\beta_{2}=\alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \frac{\sin \hat{\Delta} \hat{A} \sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \\
A\left(\mathrm{eV}^{2}\right)=0.76 \times 10^{-4} \rho(\mathrm{~g} / \mathrm{cc}) E(\mathrm{GeV}) \quad \hat{\Delta}=\Delta_{31} L / 4 E, \hat{A}=A / \Delta_{31}
\end{gathered}
$$

Cervera etal, hep-ph/0002108; Freund etal, hep-ph/0105071

$$
\text { We demand that: } P_{\mu e}\left(\mathrm{LO}, \delta_{\mathrm{CP}}^{\mathrm{LO}}\right)=P_{\mu e}\left(\mathrm{HO}, \delta_{\mathrm{CP}}^{\mathrm{HO}}\right)
$$

Above condition gives us: $\cos \left(\hat{\Delta}+\delta_{\mathrm{CP}}^{\mathrm{LO}}\right)-\cos \left(\hat{\Delta}+\delta_{\mathrm{CP}}^{\mathrm{HO}}\right)=\frac{\beta_{1}-\beta_{3}}{\beta_{2}}\left(\sin ^{2} \theta_{23}^{\mathrm{HO}}-\sin ^{2} \theta_{23}^{\mathrm{LO}}\right)$
For $\mathrm{L}=810 \mathrm{~km} \& \mathrm{E}=2 \mathrm{GeV}$, we get for NH and neutrino: $\cos \left(\hat{\Delta}+\delta_{\mathrm{CP}}^{\mathrm{LO}}\right)-\cos \left(\hat{\Delta}+\delta_{\mathrm{CP}}^{\mathrm{HO}}\right)=1.7$

$$
P_{\mu e}\left(\mathrm{LO},-116^{\circ} \leq \delta_{\mathrm{CP}} \leq-26^{\circ}\right) \text { is degenerate with } P_{\mu e}\left(\mathrm{HO}, 64^{\circ} \leq \delta_{\mathrm{CP}} \leq 161^{\circ}\right)
$$

Octant $-\delta_{C P}$ degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

NOvA, HO-NH

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]
Octant $-\delta_{\mathrm{CP}}$ degeneracy in $\mathrm{P}_{\mu \mathrm{e}}$ as a function of neutrino energy
At $2 \mathrm{GeV}, P_{\mu e}\left(\mathrm{LO},-116^{\circ} \leq \delta_{\mathrm{CP}} \leq-26^{\circ}\right)$ is degenerate with $P_{\mu e}\left(\mathrm{HO}, 64^{\circ} \leq \delta_{\mathrm{CP}} \leq 161^{\circ}\right)$

As an example, $P_{\mu e}\left(\mathrm{LO}, \delta_{\mathrm{CP}}=-90^{\circ}\right)$ is degenerate with $P_{\mu e}\left(\mathrm{HO}, \delta_{\mathrm{CP}} \approx 66^{\circ}\right)$

Octant $-\delta_{C P}$ degeneracy in $T 2 K$ and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant $-\delta_{C P}$ degeneracy in LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Bi-Event Plots for T2K and NOvA

T2K[2.5+2.5]

NOvA[3+3]

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]; see also the talk by T. Nakadaira in this workshop
neutrino vs. anti-neutrino events for various octant-hierarchy combinations, ellipses due to varying δ_{CP} !
If $\delta_{\mathrm{CP}}=-90^{\circ}\left(90^{\circ}\right)$, the asymmetry between v and anti- v events is largest for NH (IH)
For NOvA \& T2K, the ellipses for the two hierarchies overlap whereas the ellipses of LO are well separated from those of HO , the same is true for T 2 K as well!

Octant discovery: balanced neutrino \& anti-neutrino runs needed in each experiment!

Allowed regions in test $\sin ^{2} \theta_{23}-$ true $\delta_{C P}$ plane

HO-NH true, NH test, 2σ

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino $\&$ anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Allowed regions in test $\sin ^{2} \theta_{23}-$ true $\delta_{C P}$ plane

Balanced neutrino $\&$ anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Resolving Octant of θ_{23} with $T 2 K$ and NOvA

A 2σ resolution of the octant, for all combinations of neutrino parameters, becomes possible if we add the balanced neutrino and anti-neutrino runs from T2K (2.5 years $v+2.5$ years anti-v) and NOvA (3 years $v+3$ years of anti-v)

Important message: T2K must run in anti-neutrino mode in future!

Octant discovery in θ_{23} (true) $-\delta_{C P}$ (true) plane with $T 2 K \& N O v A$

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

With Normal Hierarchy

If $\theta_{23}<41^{\circ}$ or $\theta_{23}>50^{\circ}$, we can resolve the octant issue at 2σ irrespective δ_{CP}
If $\theta_{23}<39^{\circ}$ or $\theta_{23}>52^{\circ}$, we can resolve the octant issue at 3σ irrespective δ_{CP}

Future Superbeam Expts with LAr Detector: LBNE \& LBNO

LBNO: CERN-Pyhasalmi (2290 km) 750 kW beam power, 20 kt LArTPC
$\underline{0.5 * \text { LBNO: reduce detector size to } 10 \mathrm{kt}}$
For octant, balanced v \& anti- v data must!
LBNE10: FNAL-Homestake (1300 km) 708 kW beam power, 10 kt LArTPC

For LBNE10, in case of LO, hierarchy discovery is very limited!

Octant determination in LBNE10 is similar to $0.5 * \mathrm{LBNO}$!

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]
Wide Band Beam \rightarrow Higher statistics \rightarrow cover several L/E values \rightarrow kill clone solutions

LAr Detector \rightarrow Excellent Detection efficiency at $1^{\text {st }} \& 2^{\text {nd }}$ Osc. maxima, good background rejection!

High L \rightarrow High E \rightarrow High cross-section \rightarrow Less uncertainties in cross-section at high E

Octant Discovery with LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]
For octant: in their first phases, 4σ discovery for LBNO and 3σ for LBNE10!

Octant Discovery with Atmospheric Neutrinos

Agarwalla, Mena, Palomares-Ruiz, work in progress Attend the talks by S. Choubey and N.K. Mondal in this workshop

Concluding Remarks

Recent measurement of a moderately large value of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos!

It has opened up exciting possibilities for current \& future oscillation experiments!
T2K and NOvA are now poised to probe the impact of full 3 flavor effects to discover octant of θ_{23} (a first step towards CP violation discovery)!

Balanced v and anti- v runs from T2K \& NOvA can establish the correct octant at 2σ for any combination of hierarchy and CP phase if $\sin ^{2} \theta_{23} \leq 0.43$ or ≥ 0.58

In its first phase, LBNE10 can resolve the octant ambiguity of θ_{23} around 3σ C.L.
In its first phase, LBNO can decide the correct octant of θ_{23} around 4σ C.L.
Large value of θ_{13} allows us to explore Octant with atmospheric neutrinos! ICAL@INO experiment, IceCube Deepcore, PINGU will play a vital role!

THANK YOU FOR YOUR ATTENTION!

