Results and prospects from MINOS and MINOS+

João A. B. Coelho for the MINOS Collaboration

Tufts University

20 August 2013

- Ter - Is

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 1.1/30

The MINOS experiment

Coelho, J. A. B. (Tufts)

MINOS overview

MINOS overview

Exposure

- $\diamond~15.6\times10^{20}$ protons on target in 7 years of running
- $\diamond~37.88$ kt-year of atmospheric neutrinos since 2003

Total NuMI protons to 00:00 Monday 01 October 2012

Coelho, J. A. B. (Tufts)

Coelho, J. A. B. (Tufts)

NuFact 2013 5.1/30

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 5.2/30

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 5.4/30

Three-flavor oscillations

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 6.1/30

3

< □ > < □ > < □ > < □ > < □ >

Beyond two flavors

- $\begin{array}{l} \diamond \ L/E \ll 10^4 \ {\rm km/GeV}: \\ \mathcal{P}_{\alpha\beta} = \delta_{\alpha\beta} \pm \sin^2(2\theta^{\oplus}_{\alpha\beta}) \sin^2(1.27\Delta m^2_{\alpha\beta}L/E) + \mathcal{O}(\Delta m^2_{\odot}L/E)^2 \end{array}$
- ◊ Two degeneracies:
 - Mass hierarchy
 - Octant of $\theta_{\alpha\beta}^{\oplus}$
- ◊ Three solutions:
 - Three-flavor terms ($\mathcal{O}(\Delta m_{\odot}^2 L/E)$)
 - Matter effects ($\Delta m_{32}^2 \sim \sqrt{2}G_F n_e E$)
 - Multiple channels $(\theta^{\oplus}_{\mu\mu} \neq \theta^{\oplus}_{\mu e} \neq \theta^{\oplus}_{ee})$

イロト 不得 トイヨト イヨト 二日

Coelho, J. A. B. (Tufts)

NuFact 2013 8.1/30

Coelho, J. A. B. (Tufts)

NuFact 2013 8.2/30

Coelho, J. A. B. (Tufts)

NuFact 2013 8.3/ 30

Coelho, J. A. B. (Tufts)

NuFact 2013 8.4/ 30

Mantle Resonance

Coelho, J. A. B. (Tufts)

NuFact 2013 9.1/30

Mantle Resonance

Coelho, J. A. B. (Tufts)

NuFact 2013 9.2/30

Analysis Overview

- ♦ Extended version of the 2ν result[†]
- $\diamond~$ New binning in $\cos(\theta_z)$ and energy to exploit resonance effects
- $\diamond~$ Improved algorithm for calculating 3ν probabilities
- ♦ Fit in 4D parameter space: $(\Delta m_{32}^2, \sin^2 \theta_{23}, \sin^2 \theta_{13}, \delta_{CP})$
- Include 15 systematics as nuisance parameters in the fit
- Sector A Sector A
 - $\sin^2 \theta_{13} = 0.0242 \pm 0.0025 \ (\theta_{13} = 8.95^\circ)$
- Solar parameters fixed to global average:*

•
$$\Delta m_{21}^2 = 7.54 \times 10^{-5} \text{ eV}^2$$

• $\sin^2 \theta_{12} = 0.307$

[†]Phys. Rev. Lett. 110, 251801 (2013)

*Fogli et al., Phys. Rev. D 86, 013012 (2012)

Coelho, J. A. B. (Tufts)

NuFact 2013 10.1/30

Data Samples

- $\diamond~$ Uses the same data samples as the 2ν result
- ◊ Full beam exposure:
 - 10.71×10^{20} POT taken in neutrino mode
 - Select ν_{μ} -CC interactions
 - Select $\overline{\nu}_{\mu}$ -CC interactions
 - + 3.36×10^{20} POT taken in anti-neutrino mode
 - Select $\overline{\nu}_{\mu}$ -CC interactions
- ◊ 37.88 kt-years of atmospheric neutrinos
 - Select ν_{μ} -CC interactions
 - Select $\overline{\nu}_{\mu}$ -CC interactions

くロ と く 戸 と く 三 と 一

Disappearance Data

NuFact 2013 12.1/30

< 17 ▶

Disappearance Results

Coelho, J. A. B. (Tufts)

NuFact 2013 13.1/30

イロト イポト イヨト イヨト

Combining with ν_e Appearance

 Appearance result also probes 3-flavor oscillations

Coelho, J. A. B. (Tufts)

NuFact 2013 14.1/30

Combining with ν_e Appearance

- ◇ Appearance result also probes 3-flavor oscillations
- Performed a preliminary combined fit of appearance and disappearance data
- ♦ Add 4D likelihood surfaces: $(\Delta m_{32}^2, \sin^2 \theta_{23}, \sin^2 \theta_{13}, \delta_{CP})$
- Systematics are taken to be uncorrelated between analyses
- Normal hierarchy and upper octant disfavored at 81% C.L.

Coelho, J. A. B. (Tufts)

NuFact 2013 14.2/30

∃ > < ∃ >

Disappearance Results

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 15.1/30

イロト イポト イヨト イヨト

Combined Results

2.8 MINOS PRELIMINARY Marginal preference for inverted hierv_µ disappearance + v_e appearance 10.71×10²⁰ POT v_µ-mode, 3.36×10²⁰ POT ⊽_µ-mode, 37.88 kt-yr atmospheric neutrinos \diamond archy and lower octant 2.6 2.4 Δm²₃₂ (10⁻³eV²) 6 MINOS PRELIMINARY v_{μ} disappearance + v_{e} appearance 10.71×10²⁰ POT v_{μ} -mode, 3.36 ×10²⁰ POT \overline{v}_{μ} -mode, 37.88 kt-yr atmospheric neutrinos 2.2 Normal hierarchy Inverted hierarchy -2∆log(L) -2.2 Profile of likelihood surface 4 Normal hierarchy Inverted hierarchy 90% C.L. -2.4 2 -2.6 68% C.L -68% C.L. ★ Best fit 90% C.L -2.8 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.6 0.7 0.5 $sin^2\theta_{23}$ $\sin^2\theta_{23}$

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 16.1/30

イロト イポト イヨト イヨト

Combined Results

- Marginal preference for inverted hierarchy and lower octant
- o Normal Hierarchy

$$\label{eq:2.1} \begin{array}{l} \diamond \ \ |\Delta m^2_{32}| = 2.37^{+0.09}_{-0.09} \times 10^{-3} {\rm eV}^2 \\ \diamond \ \ 0.35 < \sin^2 \theta_{23} < 0.65 \ {\rm at} \ {\rm 90\%} \ {\rm C.L.} \end{array}$$

Inverted Hierarchy

I > <
 I >
 I

 $\exists \rightarrow$

I = 1

Sterile Neutrino Controversy

- Possibly due to sterile neutrinos
- $\diamond~$ New mass splitting $\Delta m_{\odot}^2 \sim 1~{\rm eV}^2$
- > Conflicting with other experiments
- 4-flavor model:
 - $\diamond \sin^2(2\theta_{\mu e}^{\oslash}) \sim \sin^2(2\theta_{14}) \sin^2\theta_{24}$
 - $\diamond \ \sin^2(2\theta_{ee}^{\oslash}) \sim \sin^2(2\theta_{14})$
 - $\diamond \sin^2(2\theta^{\oslash}_{\mu\mu}) \sim \sin^2(2\theta_{24})$

4 口 ト 4 同

See Zarko's talk on Friday

Coelho, J. A. B. (Tufts)

NuFact 2013 17.1/30

Sterile Neutrino Controversy

- Possibly due to sterile neutrinos
- $\diamond~$ New mass splitting $\Delta m_{\odot}^2 \sim 1~{\rm eV}^2$
- > Conflicting with other experiments
- 4-flavor model:
 - $\diamond \sin^2(2\theta_{\mu e}^{\oslash}) \sim \sin^2(2\theta_{14}) \sin^2\theta_{24}$
 - $\diamond \ \sin^2(2\theta_{ee}^{\oslash}) \sim \sin^2(2\theta_{14})$
 - $\diamond \sin^2(2\theta^{\oslash}_{\mu\mu}) \sim \sin^2(2\theta_{24})$
- See Zarko's talk on Friday

Coelho, J. A. B. (Tufts)

NuFact 2013 17.2/30

3000 events/year between 4-10 GeV

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and antineutrinos
- Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

イロト イポト イヨト イヨト

- Decoherence
- Decay

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and anti-neutrinos
- ◊ Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

イロト イポト イヨト イヨト

- Decoherence
- Decay

Coelho, J. A. B. (Tufts)

NuFact 2013 18.2/ 30

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and antineutrinos
- Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

イロト イポト イヨト イヨト

- Decoherence
- Decay

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and antineutrinos
- ◊ Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

イロト イポト イヨト イヨト

- Decoherence
- Decay

Coelho, J. A. B. (Tufts)

NuFact 2013 18.4/ 30

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and antineutrinos
- ◊ Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

I > <
 I >
 I

- Decoherence
- Decay

∃ > < ∃ >

- ◊ Higher energy neutrinos
- Broad spectrum to test three-flavor paradigm
- More statistics, different energy, different systematics
- High statistics with neutrinos and antineutrinos
- Improved sensitivity to:
 - Sterile neutrinos
 - Extra-dimensions
 - Non-standard interactions

< ロ ト < 同 ト < 三 ト < 三 ト

- Decoherence
- Decay

Summary

Updated results with full 3-flavor framework

	Parameter	Best fit	Confidence limits		
Normal	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.37	2.28 - 2.46 (68% C.L.)		
hierarchy	$\sin^2 heta_{23}$	0.41	0.35 - 0.65 (90% C.L.)		
Inverted	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.41	2.32 - 2.53 (68% C.L.)		
hierarchy	$\sin^2 \theta_{23}$	0.41	0.34 - 0.67 (90% C.L.)		
Preference for inverted hierarchy: $-2\Delta \log L = 0.23$					
Preference for lower octant: $-2\Delta \log L = 0.09$					
Exclusion of maximal mixing: $-2\Delta \log L = 1.54$ (\Rightarrow 79% C.L.)					

- MINOS+ will continue to test 3-flavor paradigm
- Sensitivity to alternative models in a broad range of energies
- With great statistics comes great responsibility

Coelho, J. A. B. (Tufts)

イロト イポト イヨト イヨト

Thank you!

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 20.1/ 30

590

< □ > < □ > < □ > < □ > < □ >

Backup Slides

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 21.1/30

Ð.

DQC

<ロト < 回ト < 回ト < ヨト < ヨト

The NuMI beam

The MINOS detectors

Beam ν_{μ} -CC selection

- R input variables \diamond
 - # of active planes
 - Mean PH per plane

nput variable 2

- PH fluctuation
- Transverse profile
- \diamond J input variables
 - # of active planes
 - Track end PH
 - Scattering
- Select if J > 0.5 || R > 0.25 \diamond
- Charge determined by curvature \diamond

Coelho, J. A. B. (Tufts)

Atmospheric selection

- o Contained-vertex selection:
- Select events with long tracks (>8 planes)
- Use timing, direction and topology to remove cosmic rays
- \diamond Background reduced by a factor of 10^7
- Also included samples of shower-like events and rockinduced events from upgoing and horizontal muons

Coelho, J. A. B. (Tufts)

Disappearance Event Samples

	Simulation		Events
Data Set	No osc.	With osc.	Observed
ν_{μ} from ν_{μ} beam	3201	2543	2579
$\overline{\nu}_{\mu}$ from ν_{μ} beam	363	324	312
Non-fiducial μ from ν_{μ} beam	3197	2862	2911
$\overline{\nu}_{\mu}$ from $\overline{\nu}_{\mu}$ beam	313	227	226
Atm. contained-vertex $\nu_{\mu} + \overline{\nu}_{\mu}$	1100	881	905
Atm. non-fiducial $\mu^- + \mu^+$	570	467	466
Atm. showers	727	724	701

NuFact 2013 26.1/30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extrapolation

Coelho, J. A. B. (Tufts)

NuFact 2013 27.1/30

Sensitivities

Coelho, J. A. B. (Tufts)

NuFact 2013 28.1/30

イロト イポト イヨト イヨト

Sensitivities

 Some sensitivity to octant and mass hierarchy by including atmospheric neutrinos

Coelho, J. A. B. (Tufts)

MINOS

NuFact 2013 28.2/ 30

イロト イポト イヨト イヨト

Appearance Spectra

Coelho, J. A. B. (Tufts)

 $\exists \rightarrow$ NuFact 2013 29.1/30

 $\exists \rightarrow +$

Systematics

Coelho, J. A. B. (Tufts)

NuFact 2013 30.1/30

∃ > < ∃ >

< A