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Outline  

• Introduction to ionization cooling 

• Describe a promising 6D cooling lattice 

• A tapered helical lattice (known as “Guggenheim”) 

• Evolution to a straight version of a Guggenheim 

• Transform the Guggenheim to a straight lattice. Yes, it works! 

• Review key lattice parameters 

• Identify the required rf freq., voltage, B-field, absorber length 

• Discuss magnet & engineering feasibility 

• Evaluate Performance 

• Carry out a full “front-to-end” simulation 
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Muon Collider (MC) 
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• A MC offers high collision 

energy at a compact size 

• 6D Cooling is a essential step 

for achieving high luminosity 

on the Collider. 



Cooling requirement 

• Longitudinal emittance must go down by a factor of 10 

• Transverse emittance must go down by a factor 1000 

• Must happen before muons decay (at rest 2 μs)  

 

This Study 
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Ionization cooling 

• Ionization cooling is the only feasible option 

• Transverse cooling by passing beam via material 

• Longitudinal cooling through emittance exchange 

• Progressive reduction of the 6D emittance 

 
5 D. Neuffer, Part. Accel. 14, p. 75 (1983) 



History of 6D cooling lattices 
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• Tilt coils to generate dispersion 

• Emittance exchange on a wedge absorber 

• Ring evolved to a helix to avoid injection/extraction issues 

Palmer et al., PRST-AB 8, 021021 (2005); Snopok & Hanson , IJMPA 24, 987 (2009) 



Concept of tapering 
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• Lattice parameters such as rf freq., cell 

length, focusing strength, absorber 

length, change with distance 

• Keep emittance above equilibrium 

• Tapering pros: 

• More dispersion, faster cooling 

• Impressive constant cooling efficiency 

• Shorter than untapered channels 

• Method is not restricted to a Guggenheim 

• Applies to helical and straight lattices 

R. C. Fernow et al., Proc. of PAC 2001, p. 3861  



Lattice parameters 
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B-Field & beta function requirements 

• Early stage: β=40 cm, Late stage: β=3.3 cm 

• Highest B is ~17 T, highest grad.~23 MV/m for 805 MHz 

 



Example of a early stage (Stg. 2) 

10 

y 

x 



Example of a late stage (Stg. 11) 
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Particle tracking 

SIDE VIEW 

• Lattice simulated with ICOOL v. 3.30 

• Start with a real distribution from the post-merger  

• Track 100,000 particles 

• Liquid Hydrogen wedge absorber for cooling. Absorber 

windows included. 

• Four frequencies: 201, 402, 603, 805 MHz. RF windows 

included. 

 

12 



Cooling efficiency 
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• Cools to MC baseline parameters.  

• Q is flat all the way (importance of tapering) 

• Transmission ~45% with decays, windows, stochastics. 

 

Untapered 

tapered 

0.27 mm 

2 mm 

D. Stratakis, R. C. Fernow and R. B. Palmer, Proc. of IPAC 2013, p. 1549  



Cooling Performance 
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Cooling limitations from space-charge 

• 20% particle loss after z>200 m due space-charge  

• Thus, we avoid cooling longitudinally below 1.5-2.0 mm 

15 D. Stratakis, R. B. Palmer and D. Grote, Proc. of IPAC 2013, p. 759  

Warp code Warp code 



 Critical B-Field limits 
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• Even with modest safety factors our lattice fields are below 

or close to the critical limits of existing magnet technology 

• Results suggest that the last 4 stages require HTS 

 

Below critical 

 fields 



Recent progress with HTS 
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• Tested and build: 

• 25 mm aperture HTS insert generating > 16 T peak field 

• 100 mm aperture HTS midsert generating > 9 T peak field   

 

BNL/ PBL Collaboration 

(R Gupta et al.) 
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Engineering studies (H. Witte) 

• Preliminary studies with COMSOL 
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Stage 16 Stage 16 



Von-Mises stress (H. Witte) 
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From helical → straight channel 

• Good news: Only minor variations of the Guggenheim 

lattice parameters are necessary 
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TOP VIEW 

SIDE VIEW 



Lattice details 
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• Replace 201 MHz → 325 MHz. In order to match with  

Project X initial linac. 



Lattice visualization (Last stages) 

• Last 7 stages have the same configuration 

• Coils are tilted by 1.1 deg.  (not shown)  
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Particle tracking 
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• Performance is comparable to the helical Guggenheim 
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Quality factor 
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Qmax=9.5 (R_FOFO) 

Qmax=11.0 (Guggenheim) 



Summary 

• We have presented two alternative cooling schemes for 6D 

cooling (one helical and one straight). 

• With tapering, they offer a notable high performance and 

both deliver the cooling requirements for a Muon Collider 

• While the helical channel delivers the highest performance, 

the straight lattice offers (hopefully) a simpler engineering 

design. 

• With inclusion of modest safety factors, the fields are within 

the limits of the critical engineering limits. 

• Preliminary study on magnet forces shows encouraging 

results, although more work is needed. 
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