Resolving θ_{23} Octant in Current & Future Oscillation Facilities

Sanjib Kumar Agarwalla

sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\rm eff} \sin^2 \left(\frac{\Delta m_{\rm eff}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\text{eff}}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\text{CP}} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13}\sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13}\sin^2 \theta_{23}\right)$$
 where $\frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = \tan^2 \theta_{23}$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining bean and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

$$\sin^2 2\theta_{\rm eff} = 0.95^{+0.035}_{-0.036} \ (10.71 \times 10^{21} \ \rm p.o.t) \\ \sin^2 2\bar{\theta}_{\rm eff} = 0.97^{+0.03}_{-0.08} \ (3.36 \times 10^{21} \ \rm p.o.t)$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 \ (\geq 0.94 \ (90\% \ C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

	Forero etal	Fogli etal	Gonzalez-Garcia etal
$\sin^2 \theta_{23}$ (NH)	$0.427^{+0.034}_{-0.027} \oplus 0.613^{+0.022}_{-0.040}$	$0.386^{+0.024}_{-0.021}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$
3σ range	$0.36 \rightarrow 0.68$	$0.331 \rightarrow 0.637$	$0.34 \rightarrow 0.67$
$\sin^2\theta_{23}$ (IH)	$0.600^{+0.026}_{-0.031}$	$0.392^{+0.039}_{-0.022}$	Relative 1σ precision of 11%
3σ range	$0.37 \rightarrow 0.67$	$0.335 \rightarrow 0.663$	•

All the three global fits indicate for non-maximal 2-3 mixing!

In v_{μ} survival probability, the dominant term is mainly sensitive to $\sin^2 2\theta_{23}!$

If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} :

one in lower octant (LO: θ_{23} < 45 degree), other in higher octant (HO: θ_{23} > 45 degree)

In other words, if $(0.5 - \sin^2\theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ_{23} !

Fogli and Lisi, hep-ph/9604415

 v_{μ} to v_{e} oscillation data can break this degeneracy!

The preferred value would depend on the choice of the neutrino mass hierarchy!

$Octant - \delta_{CP}$ degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

 $P_{\mu e} = \beta_1 \sin^2 \theta_{23} + \beta_2 \cos(\hat{\Delta} + \delta_{CP}) + \beta_3 \cos^2 \theta_{23} \text{ (upto second order in } \alpha = \Delta_{21}/\Delta_{31} \text{ and } \sin 2\theta_{13})$

$$\beta_1 = \sin^2 2\theta_{13} \frac{\sin^2 \hat{\Delta} (1 - \hat{A})}{(1 - \hat{A})^2}, \quad \beta_3 = \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{13} \frac{\sin^2 \hat{\Delta} \hat{A}}{\hat{A}^2}$$

$$\beta_2 = \alpha \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta} (1 - \hat{A})}{1 - \hat{A}}$$

$$A({\rm eV}^2) = 0.76 \times 10^{-4} \rho \ ({\rm g/cc}) E({\rm GeV})$$
 $\hat{\Delta} = \Delta_{31} L/4E, \ \hat{A} = A/\Delta_{31}$

Cervera etal, hep-ph/0002108; Freund etal, hep-ph/0105071

We demand that:
$$P_{\mu e}(LO, \delta_{CP}^{LO}) = P_{\mu e}(HO, \delta_{CP}^{HO})$$

Above condition gives us:
$$\cos(\hat{\Delta} + \delta_{CP}^{LO}) - \cos(\hat{\Delta} + \delta_{CP}^{HO}) = \frac{\beta_1 - \beta_3}{\beta_2} (\sin^2 \theta_{23}^{HO} - \sin^2 \theta_{23}^{LO})$$

For L=810 km & E=2 GeV, we get for NH and neutrino: $\cos(\hat{\Delta} + \delta_{CP}^{LO}) - \cos(\hat{\Delta} + \delta_{CP}^{HO}) = 1.7$

$$P_{\mu e}(\text{LO}, -116^{\circ} \leq \delta_{\text{CP}} \leq -26^{\circ})$$
 is degenerate with $P_{\mu e}(\text{HO}, 64^{\circ} \leq \delta_{\text{CP}} \leq 161^{\circ})$

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

$Octant - \delta_{CP}$ degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Octant – δ_{CP} degeneracy in $P_{\mu e}$ as a function of neutrino energy

At 2 GeV,
$$P_{\mu e}(\text{LO}, -116^{\circ} \leq \delta_{\text{CP}} \leq -26^{\circ})$$
 is degenerate with $P_{\mu e}(\text{HO}, 64^{\circ} \leq \delta_{\text{CP}} \leq 161^{\circ})$

As an example, $P_{\mu e}(LO, \delta_{CP} = -90^{\circ})$ is degenerate with $P_{\mu e}(HO, \delta_{CP} \approx 66^{\circ})$

$Octant - \delta_{CP}$ degeneracy in T2K and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

$Octant - \delta_{CP}$ degeneracy in LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Bi-Event Plots for T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]; see also the talk by T. Nakadaira in this workshop

neutrino vs. anti-neutrino events for various octant-hierarchy combinations, ellipses due to varying δ_{CP} !

If $\delta_{CP} = -90^{\circ}$ (90°), the asymmetry between v and anti-v events is largest for NH (IH)

For NOvA & T2K, the ellipses for the two hierarchies overlap whereas the ellipses of LO are well separated from those of HO, the same is true for T2K as well!

Octant discovery: balanced neutrino & anti-neutrino runs needed in each experiment!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Resolving Octant of θ_{23} with T2K and NOvA

A 2σ resolution of the octant, for all combinations of neutrino parameters, becomes possible if we add the balanced neutrino and anti-neutrino runs from

T2K (2.5 years v + 2.5 years anti-v) and NOvA (3 years v + 3 years of anti-v)

Important message: T2K must run in anti-neutrino mode in future!

Octant discovery in θ_{23} (true) – δ_{CP} (true) plane with T2K & NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

With Normal Hierarchy

If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective δ_{CP}

Future Superbeam Expts with LAr Detector: LBNE & LBNO

LBNO: CERN-Pyhasalmi (2290 km) 750 kW beam power, 20 kt LArTPC

<u>0.5*LBNO</u>: reduce detector size to 10 kt

For octant, balanced v & anti-v data must!

LBNE10: FNAL-Homestake (1300 km) 708 kW beam power, 10 kt LArTPC

For LBNE10, in case of LO, hierarchy discovery is very limited!

Octant determination in LBNE10 is similar to 0.5*LBNO!

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Wide Band Beam → Higher statistics → cover several L/E values → kill clone solutions

LAr Detector → Excellent Detection efficiency at 1st & 2nd Osc. maxima, good background rejection!

High L → High E → High cross-section → Less uncertainties in cross-section at high E

Octant Discovery with LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

For octant: in their first phases, 4σ discovery for LBNO and 3σ for LBNE10!

Octant Discovery with Atmospheric Neutrinos

Agarwalla, Mena, Palomares-Ruiz, work in progress Attend the talks by S. Choubey and N.K. Mondal in this workshop

Concluding Remarks

Recent measurement of a moderately large value of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos!

It has opened up exciting possibilities for current & future oscillation experiments!

T2K and NOvA are now poised to probe the impact of full 3 flavor effects to discover octant of θ_{23} (a first step towards CP violation discovery)!

Balanced v and anti-v runs from T2K & NOvA can establish the correct octant at 2σ for any combination of hierarchy and CP phase if $\sin^2\theta_{23} \le 0.43$ or ≥ 0.58

In its first phase, LBNE10 can resolve the octant ambiguity of θ_{23} around 3σ C.L.

In its first phase, LBNO can decide the correct octant of θ_{23} around 4σ C.L.

Large value of θ_{13} allows us to explore Octant with atmospheric neutrinos! ICAL@INO experiment, IceCube Deepcore, PINGU will play a vital role!

THANK YOU FOR YOUR ATTENTION!