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Supernova	
  one	
  of	
  the	
  most	
  energe1c	
  events	
  in	
  nature.	
  

Terminal	
  phase	
  of	
  a	
  massive	
  star	
  (M > 8~10 M�)	
  	
  

Collapses	
  and	
  ejects	
  the	
  outer	
  mantle	
  in	
  a	
  shock	
  wave	
  driven	
  explosion.	
  

	
  

ENERGY	
  SCALES:	
  ~	
  1053	
  erg	
  :	
  99%	
  energy	
  is	
  emiOed	
  by	
  Neutrinos	
  (Energy	
  ~	
  10	
  MeV).	
  

TIME	
  SCALE:	
  The	
  dura1on	
  of	
  the	
  burst	
  lasts	
  ~10	
  s.	
  



Neutrino Emission Phases 

[Fischer et al. (Basel Simulations), A&A  517:A80,2010, 10. 8 Msun progenitor mass] 

Neutroniza3on	
  burst	
  	
   Accre3on	
   Cooling	
  

•  Shock breakout 
•  De-leptonization of  

outer core layers 
•  Duration ~ 25 ms  

•  powered by infalling                          
matter 

•  Stalled shock 

•  Cooling by ν 
diffusion  

Accretion: ~ 0.5 s ; Cooling: ~ 10 s 
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SN ν Flavor Evolution 
The flavor evolution in matter is described by the non-linear MSW equations: 

In the standard 3ν framework 

Kinematical  mass-mixing term 

Dynamical MSW term (in matter) 

( )2 (1 cos )  F pq q qH G dqνν θ ρ ρ= − −∫

2 †  
2vac

U M UH
E

=

2 diag( ,0,0)e F eH G N=

Neutrino-neutrino interactions term 
(non-linear) 



Spectral Splits in the Accretion Phase 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Fogli,	
  Lisi,	
  Marrone,	
  Mirizzi,	
  arXiV:	
  0707.1998	
  [hep-­‐ph]	
  ]	
  

Initial fluxes typical of 
accretion phase at 

neutrinosphere (r ~10 km) 

Fluxes at the end of collective 
effects (r ~200 km) 

Nothing happens in  

Normal Hierarchy (NH) 

Inverted	
  mass	
  
hierarchy	
  (IH)	
  

: : 2.4 :1.6 :1.0e e xF F Fν ν ν =



Dense matter (ne) dominates over nu-nu interaction (nν). 

[ S.C, Fischer, Mirizzi, 
Saviano &Tomas  

PRL 107:151101, 2011 
PRD 84:025002, 2011 

 
Sarikas, Raffelt, Hüdepohl & 

Janka 
 PRL 108:061101, 2012 

 
Dasgupta, P. O'Connor, Ott  

PRD 85:065008, 2012] 

Dense 
Matter 
effect 

Suppresses 
Collective 

Oscillations 

Suppression of Collective effects   



Suppression of Collective effects   
Predictions are robust  when collective effects are suppressed, i.e.:  

1) Neutronization burst (t < 20 ms)   
 

large νe excess and νx deficit 
  

2) Accretion phase (t < 500 ms) 
 

 Dense matter term dominates over nu-nu interaction term. 

[S.C, Fischer, Mirizzi, Saviano &Tomas 
  

PRL 107:151101, 2011 
PRD 84:025002, 2011] 

[Hannestad et al., astro-ph/0608695] 



 
 

SN neutrino Flux at Earth
 

 
 Neutronization burst & Accretion  Phase:  
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Large Detectors for Supernova Neutrinos 

In brackets events  for a “fiducial SN”  at distance 10 kpc 

MiniBooNE (200) LVD (400) 
Borexino (80) 

Super-
Kamiokande (104) 
KamLAND (330) 

IceCube (106) 



Next-generation large volume detectors might open a new era in 
SN neutrino detection: 

Next generation Detectors for Supernova Neutrinos 

UNO, MEMPHYS, 
HYPER-K!

Mton Cherenkov 

LENA 

Scintillator 

GLACIER!

LAr TPC 



Neutrino Emission Phases 

[Fischer et al. (Basel Simulations), A&A  517:A80,2010, 10. 8 Msun progenitor mass] 

Neutroniza3on	
  burst	
  	
   Accre3on	
   Cooling	
  

•  Shock breakout 
•  De-leptonization of  

outer core layers 
•  Duration ~ 25 ms  

•  powered by infalling                          
matter 

•  Stalled shock 

•  Cooling by ν 
diffusion  

Accretion: ~ 0.5 s ; Cooling: ~ 10 s 



Neutronization Burst : Model Independence 
Different  

mass 
Neutrino  

Transport 
Nuclear  

EoS  

[M.Kachelriess et al,  

hep-ph/0412082] 

‘Standard 
Candle’ 

for 
SN Neutrino 



Oscillations in the Neutronization Burst 

70 kton 

[I.Gil-Botella & A.Rubbia, hep-ph/0307244] 

Liq Ar TPC 

•   Peak is absent   NH     ( 

•   Peak is seen   IH      ( 

IH 

NH 

) 

) 

[M.Kachelriess et al, hep-ph/0412082] 

I.H. 
N.H. 

      Water Cherencov (νe,x e-           νe,x e- ) 



 
 

SN neutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Dighe, Keil & Raffelt, hep-ph/0304150 ] 
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SN neutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Borriello, S.C, Mirizzi, Serpico; PRD 86 (2012) ] 

Earth Matter Effect: 



Galactic SN Distribution 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Mirizzi, Raffelt & Serpico;  (2006) ] 

Possible sub-kpc candidate:  
 

Red supergiant Betelguse 
 

distance~ 0.2 kpc 
 

Event count~ 10s of million   



[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 

Rise time Analysis: Hierarchy Determination 

•  High degeneracy of νe and  e, suppresses 
νe  production.  

•  νe more in equilibrium with environment 
than νx  . 

Flux in IH (νx) rises faster than NH (νx, νe) 

Flux of νx rises faster than  νe  

IH: 

NH: 



15 Solar Mass 
in Ice-Cube 

Flux in IH rises faster than NH 

Rise time Analysis: Hierarchy Determination 
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[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 
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Flux in IH rises faster than NH 

Rise time Analysis: Hierarchy Determination 

IH

NH

0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

t !s"
R
#t$%R
#100

m
s$

Normalized Count rate :  
10 different models (12 M⊙-40 M⊙) 

 

Blue: IH ; Red: NH 

[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 



Rise time Analysis: Hierarchy Determination 
Normalized Count rate :  

32 different models 
[C.D. Ott et al. Neutrino 2012, Japan, 1212.4250] 

It would be important in future to study the robustness of the rise time 
signature with more and more accurate simulations.  



Conclusions 
•  Observing SN neutrinos is the next frontier of low-

energy neutrino astronomy. 

•  Collective effects are suppressed in early SN phases, 
implying hierarchy sensitivity at large θ13. 

•  Neutronization phase is the best phase to probe mass     
hiearchy. 

 
•  Earth Matter effect: Detectable for Sub-kpc SNe. 

 
•  Rise time of SNe signal contains hierarchy information.  
 
 



 

   



• Neutrinos emitted from spherical source, travel on different 
trajectories. 
• Different oscillation phases for neutrinos traveling in different paths. 
• Strong ν-ν interaction can overcome trajectory dependent dispersion. 

Collective conversion requires :   ne << nν 

Collective conversion is matter Suppressed :   ne     nν	
  

Appendix: Matter Suppression 

[ Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico & Sigl, arxiv: 0807.0659 ] 

∼ > 



 
 

Appendix: SN antineutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Borriello, S.C, Mirizzi, Serpico; PRD 86 (2012) ] 

Earth Matter Effect: 
 



Appendix: Rise time Analysis:  
                        Hierarchy Determination 
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
typical Poisson error estimates accounting for the signal plus photomultiplier background noise, whose average value is shown
as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).

growing energy of νe shown in Fig. 1 contribute to the final shape of the curves. Also, note that despite the relatively
large differences existing over very early timescales (10-20 ms, as already shown in [26]), one can already expect that
integrating the signal over a longer timescales will be needed to beat statistical errors.
It is useful to compare the analogous behaviors for the whole set of models, a task which will be made easier by

a(n irrelevant) rescaling to the rate measured at the end of the time interval considered, R(t)/R(tend). Also, for the
following statistical analysis, it is useful to introduce cumulative time distributions K(x), defined in terms of R(t) as

K(x) =

∫ x tend
0 dtR(t)
∫ tend
0 dtR(t)

, (11)

which is a dimensionless function satisfying K(0) = 0, K(1) = 1, with x ∈ [0, 1]. In Fig. 4, we illustrate the count
rate functions RA

i (t) and the cumulative functions KA
i (x) for the different models considered, with i = 1, . . . , N ≡ 10

labeling the simulation and A (or in general capital latin letters) being the index related to the hierarchy, i.e. A =NH
(red, bottom curves) or A =IH (blue, top curves). In particular, we used the nine 1D SN models shown in Fig. 1 and a
2D SN model with a 15 M! progenitor mass. Note that the difference between the two hierarchies is a shape difference
(as should be clear already from Fig. 1), rather than a mere overall difference in average energies, for example, as in
some past proposals for SN physical diagnostics. Also note that this difference is quite independent of the progenitor
used (most notably of its mass) and, in agreement with expectations, do not show a significant dependence from the
dimensionality of the simulation either.

A. Metric in Function Space

We now turn to assigning a quantitative meaning to the distance among models. To that purpose, we must introduce
some metric in the function space. We choose the so-called D∞ metric, so that the distance between the predictions
(always a number between 0 and 1) writes:

D∞(KA
i ,KB

j ) = max
x∈[0;1]

∣

∣KA
i (x)−KB

j (x)
∣

∣ . (12)

This choice is solely dictated by the standard practice in experimental physics to use Kolmogorov–Smirnov statistic
(which uses that metric) to test whether two underlying one-dimensional distributions differ. We emphasize, however,
that alternative choices are possible and in fact may lead to better discrimination power. Thus, the following results
are to be meant as illustrative. Generically, we find that “typical” distances of a model KA

i from the models having
the same hierarchy (same “A”) but different simulation (different “i”) is smaller than “typical” distances from curves
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
typical Poisson error estimates accounting for the signal plus photomultiplier background noise, whose average value is shown
as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).
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15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
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as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).
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(which uses that metric) to test whether two underlying one-dimensional distributions differ. We emphasize, however,
that alternative choices are possible and in fact may lead to better discrimination power. Thus, the following results
are to be meant as illustrative. Generically, we find that “typical” distances of a model KA

i from the models having
the same hierarchy (same “A”) but different simulation (different “i”) is smaller than “typical” distances from curves

Distance between  
any randomly picked NH “model”  

from average IH one  
is significantly above  

the one from average NH ones 
 and well expected statistical  errors.  

 

Assessing “theory/numerical” error 
requires detailed study over other 

simulations with comparable 
sophistication.�

Appendix: Rise time Analysis:  
                        Hierarchy Determination 


