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The cosmic neutrino background...

T ν=( 4
11 )

1/3

T γ=1.95K

nν=
6
4
ζ(3)
π2

T ν
3= 112 cm−3

Embedding the standard 
model in FLRW cosmology 
necessarily leads to a thermal 
neutrino background 
(decoupling at T ~ 1 MeV).

Present temperature:

Number density per flavour: 

Fixed by weak interactions



  

The cosmic neutrino background: energy density...

The present-day neutrino energy density depends on whether the neutrinos are 
relativistic or nonrelativistic.

● Relativistic (m << T): 

ρν=
7
8
π 2

15
T ν

4=7
8 ( 4

11 )
4 /3

ργ 3ρν
ργ ∼0.68

Photon energy density

● Nonrelativistic (m >> T  ~ 10-4 eV): 

ρν=mνnν

Neutrino dark matter! 

Ων ,0h
2= mν

94 eV
>0.1%h2

ΛCDM (since Planck)

From neutrino oscillations m
ν
 > 0.05 eV



  

For most of the observable history of the universe neutrinos have significant speeds.

Detecting neutrino masses via free-streaming...

c
ν c

ν

Gravitational
potential wells

● eV-mass neutrinos become nonrelativistic 
near γ decoupling.

● Even when nonrelativistic, neutrinos have 
large thermal motion. 

Avoid 
gravitational
capture

CMB 
anistropies

Large-scale
structure

vthermal =
T ν
mν
≃ 50.4(1+ z)(eV

mν ) km s−1

λFS≡√8π2 vthermal
2

3ΩmH
2 ≃4.2√ 1+ z

Ωm ,0 ( eV
mν ) h−1 Mpc ; k FS≡

2π
λFS

Free-streaming 
scale:

≪FS

k≫k FS

Non-clustering

cν c
ν
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Some time later...

Only CDM 
clusters

Both CDM and
neutrinos cluster

ν

Consider a neutrino and a cold dark matter particle encountering two gravitational 
potential wells of different sizes in an expanding universe:

→ Cosmological neutrino mass measurement is based on observing this free-
streaming induced potential decay at λ<< λFS.

λ≫λ FS λ≪λ FS

cν c
ν

Ψ

Ψ

Potential stays the same 
(during matter domination)

Potential decays



  

Galaxy 
redshift 
surveys

Lyman-α

Ωνh
2=∑ mν

94eV

fν = Neutrino 
fraction

P (k )=〈∣δ(k )∣2〉

Cluster
abundance

Δ P
P
∝8 f ν≡8

Ων
Ωm

Large-scale matter distribution...

Replace some 
CDM with neutrinos



  

Fixed total matter density
Free H

0
 (sound horizon adjusted)

∑ mν=1×1.2 eV

∑ mν=3×0.4 eV

∑ mν=0 eV

Uplifting in the 
acoustic oscillation 
phase

Early ISW Effect 
(after photon 
decoupling)

CMB anisotropies...

WMAP ACT, SPT

Planck



  

Sachs-Wolfe effect: 

Ψ=0

Gravitational 
potential

Observer

Redshift Blueshift

Observed CMB
temperature fluctuation 

ΔT
T observed

=ΔT
T intrinsic

+Ψ

Ψ CMB 
photon



  

Sachs-Wolfe effect: 

Ψ=0

Gravitational 
potential

Observer

Redshift Blueshift

Observed CMB
temperature fluctuation 

ΔT
T observed

=ΔT
T intrinsic

+Ψ

Ψ CMB 
photon

Potential decay before γ decoupling: ΔT
T intrinsic

ΔT
T observed

∣Ψ∣

acoustic 
oscillations



  

Sachs-Wolfe effect: 

Ψ=0

Gravitational 
potential

Observer

Redshift Blueshift

Observed CMB
temperature fluctuation 

ΔT
T observed

=ΔT
T intrinsic

+Ψ

Ψ CMB 
photon

Potential decay before γ decoupling: 

Integrated Sachs-Wolfe effect (potential decay after γ decoupling): 

time ΔT
T ISW

( n̂)=∫
0

τ0

d τ e−κ(τ)[ Ψ̇ (τ , n̂ (τ0−τ))+Φ̇(τ , n̂( τ0−τ))]
Temperature 
enhancement

ΔT
T intrinsic

ΔT
T observed

∣Ψ∣

acoustic 
oscillations



  

Sachs-Wolfe effect: 

Ψ=0

Gravitational 
potential

Observer

Redshift Blueshift

Observed CMB
temperature fluctuation 

ΔT
T observed

=ΔT
T intrinsic

+Ψ

Ψ CMB 
photon

Potential decay before γ decoupling: 

Integrated Sachs-Wolfe effect (potential decay after γ decoupling): 

time ΔT
T ISW

( n̂)=∫
0

τ0

d τ e−κ(τ)[ Ψ̇ (τ , n̂ (τ0−τ))+Φ̇(τ , n̂( τ0−τ))]
Temperature 
enhancement

ΔT
T intrinsic

ΔT
T observed

∣Ψ∣

acoustic 
oscillations

Potential decay happens in standard ΛCDM 
cosmology anyway.

Replacing some CDM with massive 
neutrinos simply causes the potentials 
to decay more on scales below the free-
streaming scale.



  

Fixed total matter density
Free H

0
 (sound horizon adjusted)

∑ mν=1×1.2 eV

∑ mν=3×0.4 eV

∑ mν=0 eV

Uplifting in the 
acoustic oscillation 
phase

Early ISW Effect 
(after photon 
decoupling)

CMB anisotropies...

WMAP ACT, SPT

Planck



  

Present constraints...



  

Post-Planck...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013



  

Post-Planck...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013

Planck + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) 
+ baryon acoustic oscillations 

∑ mν<0.25 eV (95%C.L.)
Best minimal bound

W7+ matter power spectrum + HST H
0

Formally similar to the pre-Planck
best minimal bound, but arguably 
less prone to issues of nonlinearities.



  

Galaxy 
redshift 
surveys

Lyman-α

Ωνh
2=∑ mν

94eV

fν = Neutrino 
fraction

Δ P
P
∝8 f ν≡8

Ων
Ωm

Matter power spectrum vs BAO...

Replace some 
CDM with neutrinos

Linear Nonlineark3P(k )
2π2 <1

k3P (k )
2π2 >1
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Linear theory

1-loop (nonlinear)

Time RG (nonlinear)

HaloFit (nonlinear)

N-body (nonlinear)

Pietroni 2008

Matter power spectrum = Shape
Baryon acoustic oscillations = Location of oscillatory features 



  

In a nutshell...

● Formally, the best minimal (7-parameter) upper bound on Σ m
ν
 is still hovering 

around 0.3 eV post-Planck.

● The bound has however become more robust against uncertainties:

– Less nonlinearities in BAO than in the matter power spectrum.
– Does not rely on local measurement of the Hubble parameter...
– … or on the choice of lightcurve fitters for the Supernova Ia data.

●  Dependence on cosmological model used for inference?



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

∑ mν=0eV

∑ mν=1.2eV



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

Tweak H
0

∑ mν=0eV

∑ mν=1.2eV



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

Tweak H
0
 and ω

dm

∑ mν=0eV

∑ mν=1.2eV

Imagine what might happen 
if we drop spatial flatness, 
or vary the dark energy 
EoS, etc. too... 



  

Post-Planck...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013

Planck + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) 
+ baryon acoustic oscillations 

∑ mν<0.25 eV (95%C.L.)

Dropping assumption of spatial flatness:

∑ mν<0.32 eV (95%C.L.)

Other extensions??

Best minimal bound

W7+ matter power spectrum + HST H
0



  

Discrepancies potentially resolved by 
neutrino physics??



  

Planck discrepancies with other observations...

● Hubble parameter H
0
: Planck-inferred value lower than local HST measurement.

– Alleviated by postulating N
eff

 > 3?

● Small-scale RMS fluctuation σ
8
: Planck CMB prefers a higher value than galaxy 

cluster count and galaxy shear from CFHTLens.

Ade et al. [Planck collaboration] 2013σ8(Ωm /0.27)0.3=0.782±0.01

σ8(Ωm /0.27)0.46=0.774±0.04

Planck SZ clusters

CFHTLens galaxy shear Heymans et al. 2013



  

A neutrino solution??

My take: These discrepancies are most likely due to poorly understood nonlinearities.

● Cluster counts are particularly difficult to model.

● But at face value a sterile neutrino solution is possible. 

Hamann & Hasenkamp 2013
also Wyman et al. 2013

ΔN eff=0.61±0.30
ms=(0.41±0.13) eV

CMB+all
(ΛCDM+ΔN

eff
+m

s

8-parameter model)



  

A neutrino solution??

Hamann & Hasenkamp 2013
also Wyman et al. 2013

CMB only

CMB+all
68% and 95% contours

Reactor anomaly

LSND



  

Future sensitivities...
(Planck is not the end of the story!!)



  

ESA Euclid mission selected for implementation...

Launch planned for 2019.

● 6-year lifetime

● 15000 deg2 (>1/3 of the sky)

● Galaxies and clusters out to z~2

– Photo-z for 1 billion galaxies

– Spectro-z for 50 million galaxies

● Optimised for weak gravitational 
lensing (cosmic shear)



  

c = CMB (Planck); g = Euclid galaxy clustering 
s = Euclid cosmic shear;  x = Euclid shear-galaxy cross

A 7-parameter forecast:

Expected sensitivity...

Σm
ν
 potentially detectable at 5σ+ 

with Planck+Euclid (assuming 
nonlinearities to be completely 
under control) 

Hamann, Hannestad & Y3W 2012

Most optimistic



  

c = CMB (Planck); g = Euclid galaxy clustering 
s = Euclid cosmic shear;  x = Euclid shear-galaxy cross

A 7-parameter forecast:

Expected sensitivity...

Σm
ν
 potentially detectable at 5σ+ 

with Planck+Euclid (assuming 
nonlinearities to be completely 
under control) 

Hamann, Hannestad & Y3W 2012

2σ+ detection (only shear 
nonlinearities under control) 

Most optimistic

Moderate

Very pessimistic
No knowledge of nonlinearities



  

Summary...

● Precision cosmological observables can be used to “measure” the absolute 
neutrino mass scale based on the effect of neutrino free-streaming.

● Existing precision cosmological data already provide strong constraints on the 
neutrino mas sum.
– No significant formal improvement between the best pre-Planck and post-

Planck upper bounds (at least not for the minimal 7-parameter model).

– But the post-Planck bound is arguably more robust.  

● There are outstanding discrepancies between Planck and measurements from 
HST, clusters, and cosmic shear.
– Taken at face value these discrepancies can be resolved by new neutrino 

physics (although not necessarily the same physics in all cases...).

– But personally I'd take it cum grano salis.
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