Physics performance of a Low Energy Low-Luminosity Neutrino Factory

Pilar Coloma

Center for Neutrino Physics Virginia Tech

Based on the collaboration Christensen, Coloma, Huber, 1301.7727 [hep-ph]

> NuFact2013 Aug 19-24, 2013 IHEP, Beijing, China

The golden channel

The best chance to measure CPV is through:

$$P_{e\mu}^{\pm}(\theta_{13},\delta) = X_{\pm} \sin^2 2\theta_{13}$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta m_{31}^2 L}{4E}\right)$$
$$+ Z$$

Cervera et al., hep-ph/0002108

In vacuum:
$$\begin{cases} X_{vac} \propto \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \\ Y_{vac} \propto \sin \left(\frac{\Delta m_{31}^2 L}{4E}\right) \sin \left(\frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

The golden channel

The best chance to measure CPV is through:

The platinum channel

$$P_{e\mu}^{\pm}(\theta_{13},\delta) = X_{\pm} \sin^2 2\theta_{13}$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta m_{31}^2 L}{4E}\right)$$
$$+ Z$$

$$P_{\mu e}^{\pm}(\theta_{13}, \delta) = X_{\pm} \sin^2 2\theta_{13}$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\mp \delta - \frac{\Delta m_{31}^2 L}{4E} \right)$$
$$+ Z$$

Types of neutrino beams

Muon-based neutrino beams

$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$

- Low uncertainties, no intrinsic bg, flavor rich
- Magnetization is in principle required
- Pion-based neutrino beams

$$\pi^+ o \mu^+ \nu_\mu$$

- Intrinsic bg, large flux and cross section uncertainties
- Technology already well-known
- No magnetization required

The IDS-NF

The Low Energy concept

The Low Energy Neutrino Factory

Bross, Ellis, Geer, Mena, Pascoli, 0709.3889 [hep-ph]

The Low Energy Neutrino Factory

The addition of the platinum channel was studied in 0911.3776 [hep-ph], assuming 5×10^{20} or 1.4×10^{21} useful decays per year, and 10 years

20 kton TASD detector, and 100 kton LAr detector were considered

Platinum channel effect was found to be negligible (for small θ_{13})

Fernandez-Martinez, Li, Pascoli, Mena, 0911.3776 [hep-ph]

NuSTORM

NuSTORM considers low energy muons (3.8 GeV)

Three main purposes:

- cross section

measurements in the low energy regime

- sterile neutrino searches
- muon acceleration R&D

Tunnell, 1205.6338 [hep-ph]

NuMAX

Neutrinos from Muon Accelerators at project X

NuMAX

- 1 MW, 3 GeV protons from PX-II
- No muon cooling
- Acceleration to 5 GeV
- 1.6x10²⁰ useful muon decays per year

NuMAX

A magnetized 10 kton LAr detector is considered:

- Efficient at low energies
- High energy resolution
- Synergy with LBNE-phase I
- Other applications: atmospherics, supernova, proton decay

	Channel	Effs.	Bg. Rej.	$\sigma(E_{\nu})$	E_{ν} (GeV)	LBNE coll.,	
\mathbf{LAr}	$ u_{\mu}$	80%	99.9%	$0.2\sqrt{E}$	[0.5, 5]	1110.6249 [hep-ex]	
	$ u_e$	80%	99%	$0.15\sqrt{E}$	[0.5, 5]	0709.3889 [hep-ph]	
SD	$ u_{\mu}$	73%-94%	99.9%	$0.2\sqrt{E}$	[0.5, 5]	Fernandez-Martinez	
TA	$ u_e$	37%-47%	99%	$0.15\sqrt{E}$	[0.5, 5]	et al., 0911.3776 [hep-ph]	

Christensen, Coloma, Huber, 1301.7727 [hep-ph]

Non-magnetized LAr?

Charge separation can in principle be done statistically:

- Protons can in principle be tagged in ν interactions
- Different absorption rates for μ^+ and μ^- . (Michel electron is not observed for μ^-)
- Different momentum distribution for the charged lepton

We consider also a non-magnetized detector, with charge separation between 70% and 90%

(see, for instance, 0805.2019 [hep-ph] or 1102.1964 [hep-ex])

Results

Christensen, Coloma, Huber, 1301.7727 [hep-ph]

Christensen, Coloma, Huber, 1301.7727 [hep-ph]

NuMAX

NuMAX+

Neutrinos from Muon Accelerators at project X

NuMAX

- 1 MW, 3 GeV protons 3 MW, 3 GeV protons
 from PX-II
- No muon cooling
 Muon cooling
- Acceleration to 5 GeV
- 1.6x10²⁰ useful muon decays per year

- Acceleration to 5 GeV
- 1x10²¹ useful muon
 decays per year

Conclusions

- A low energy low luminosity neutrino factory represents the logical intermediate step between:
 - A very low energy physics programme, which includes sterile neutrino searches as well as neutrino cross section measurements in the low energy regime
 - A discovery and precision physics programme: a full luminosity NF is giving the best chances to discover CP violation, plus is the only facility capable of reaching precision comparable to the quark sector
- Such facility can be built without muon cooling in its first stage

Conclusions

- We have restricted the baseline to match the Fermilab-Homestake distance (1300 km). We find that:
 - We find that, for a large value of θ_{13} , the combination of golden and platinum channels gives optimal performance for both CP violation and mass hierarchy discovery potentials
 - Further upgrades include: muon cooling, proton driver, and detector mass. After upgrading, performance is comparable to the IDS-NF
- We have also checked that the performance of NuMAX with a non-magnetized detector would still be comparable to that of LBNE-I

Thank you!

Number of events

Channel	$ u_e ightarrow u_\mu$	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	
Signal	267	276	1485	
Background	7	73	17	
Channel	$\bar{\nu}_e \rightarrow \bar{\nu}_\mu$	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$	$\bar{ u}_{\mu} ightarrow \bar{ u}_{\mu}$	
Signal	52	59	562	
Background	6	73	6	

MH discovery potential

Low Luminosity scenarios

	Useful decays per year	Detector Mass	Number of years	Exposure (in kton-decays)
Geer et al.,	3x10 ²⁰	20	5	3x10 ²²
hep-ph/0701258	5x10 ²⁰	20	10	1x10 ²³
Bross et al.,	5x10 ²⁰	20*	10	1x10 ²³
0709.3889 [hep-ph]	1x10 ²¹	30*	10	3x10 ²³
Fernandez-Martinez et	5x10 ²⁰	20	10	1x10 ²³
al., 0911.3776 [hep-ph]	1.4x10 ²¹	100	10	1.4x10 ²⁴
This work	2x10 ²⁰	10	10	2x10 ²²

*detector mass times efficiency

Nuclear effects and FSI

Lalakulich, Mosel and Gallmeister, 1208.3678 [nucl-th]

Coloma, Donini, Fernandez-Martinez and Hernandez, 1203.5651 [hep-ph]

