MiniBooNE Cross Section Measurements

Žarko PavloviĆ Los Alamos National Laboratory

Outline

- Booster Neutrino Beamline & MiniBooNE detector
- Cross section measurements with MiniBooNE
- New results

– Anti neutrino CCQE (J. Grange)

- Forthcoming results
 - NC Elastic (R. Dharmapalan)
 - CC inclusive (M. Tzanov)
- Conclusion

Booster Neutrino Beam

- Designed to study LSND anomaly similar L/E as LSND
 - MiniBooNE ~500m/~500MeV
 - LSND ~30m/~30MeV
- Horn focused neutrino beam (p+Be)
 - Horn polarity \rightarrow neutrino or anti-neutrino mode
- Mineral oil Cherenkov detector

Hadron production in BNB target

50

200

- Major uncertainty in the neutrino flux prediction due to pion production in p+Be interactions
- Need to know neutrino flux for ٠ precise cross section measurements
- Used external pi+ & pi- production ۲ data (HARP, BNL E910)
- HARP measured production on Be ۲ target using 8.9GeV protons
- Covers phase space contributing to • 78% of neutrino flux from pi+ (76% from pi- in antineutrino mode)
- Overall 9% flux uncertainty dominant error in cross section measurement

θ_+=105 mrad

8,,+=75 mrad

B_#+=135 mrad

HARP collaboration, Eur. Phys. J. C52 29 (2007)

Predicted flux

Phys. Rev. D79, 072002 (2009)

Predicted flux

Phys. Rev. D79, 072002 (2009)

MiniBooNE Detector

- 6.1m radius sphere filled with 800t of pure mineral oil – interactions on CH₂
- 1280 PMTs inner region and 240 PMTs in outer veto region
- 10% photo cathode coverage
- 4pi detector covers entire angular space
- Event reconstruction primarily based on Cherenkov light – best at reconstructing leptons
- Timing and topology
- Scintillation light enables measurement of NC elastic events

Neutrino mode cross sections

- Collected data corresponding to 6.5x10²⁰ POT
- ~1000000 interactions in fiducial volume
- MiniBooNE has published ~90% of the total neutrino mode rate

Anti neutrino mode cross sections

- Collected data corresponding to more than 10²¹ POT
- Unprecedented v statistics
- Large background from wrong-sign v_{μ}
 - has been addressed

Wrong sign background

- Pion parents contributing to wrong sign flux in antineutrino mode not covered by HARP measurement
- Have to measure this background
- No magnetic field to distinguish μ^+ VS μ^-

WS background (cont'd)

- Three methods yield consistent results
 - CC1pi⁺ direct rate measurement of wrong signs
 - μ^{-} capture due to nuclear capture ν_{μ} CC events less likely to produce decay electrons compared to $\overline{\nu_{\mu}}$
 - CCQE angular distribution (not actually used since it depends on $\overline{\nu}_{\mu}$ cross section)
- Predicted v_{μ} flux in antineutrino mode constrained to better than 15% not a dominant uncertainty anymore

Phys. Rev. D84, 072005 (2011)

CCQE results

- 71k $\bar{\nu}_{u}$ CCQE candidates (30% efficiency/60% purity)
- Largest background from wrong signs (measured)
- Main result is the double differential on CH₂ least model-dependent measurement possible with MiniBooNE data
- Many other cross sections available in the paper (hydrogen subtracted CCQE, Total $\sigma(E_v)$, ...)

Uncertainty type	Normalization uncertainty (%)
$\bar{\nu}_{\mu}$ flux	9.6
Detector	3.9
Unfolding	0.5
Statistics	0.8
ν_{μ} background	3.9
$CC1\pi^{-}$ background	4.0
All backgrounds	6.4
Total	13.0

Bit of history

- In the early days saw discrepancy between neutrino data & prediction (Relativistic Fermi Gas (RFG) +M_A=1.0GeV)
- No model at the time, so tuned M_A for oscillation analysis
- Good fit with M_A=1.35GeV, however suspected this is just effective parameter covering for nuclear effects
 - Published double differential $\sigma(T_u, \theta_u)$
 - independent of interaction assumptions (unlike total cross section $\sigma(E_v)$)

Why M_A worked well for MiniBooNE?

 Recent Minerva results prefer strongly
 M_A=1GeV+Tranverse Enhancement Model (TEM) over
 RFG+M_A=1.35GeV
 See talks by:
 Chris Marshal (Tuesday WG2 10:30)

Why M_A worked well for MiniBooNE?

- Recent Minerva results prefer strongly M_A=1GeV+Tranverse Enhancement Model (TEM) over RFG+M_A=1.35GeV
- At BNB energies two models degenerate (above Q²>0.2GeV²)

Forthcoming cross sections

- CC inclusive
- NC elastic

CC inclusive

- Very important to measure inclusive cross section as well as exclusive channels to build models
- Can't just add CCQE, CCpi+ and CCpi0, complicated correlated systematics
 - Each channel is a background for the others through FSI model

New reconstruction

- Developed for CC inclusive measurement
- Muon kinematics from 2-track likelihood fit; second fitted track absorbs the bias due to second most prominent ring
- Significant improvement of muon kinetic energy

 resolution is about 5%
 (angle resolution as before better than 1deg)

CC inclusive results

- Selected 344k events with 96% purity
- Coming soon $d\sigma/dT_{\mu}d(cos\theta_{\mu})$, and a whole suite of other cross sections
- Full lepton reconstruction without any assumptions about nuclear target, no dependence on FSI

NC elastic

- Use scintillation light from mineral oil
- Measure n & p NC elastic interactions some separation above Cherenkov threshold (350 MeV)
- 61k event candidates (32% efficiency, 40% purity)

NC results

- Main result is $d\sigma/dQ^2$
- Normalization agrees well with MC prediction (tuned to v_{μ} CCQE data)
- Q² calculated using nucleon energy assuming interaction with an independent, at-rest target – complementary to CCQE

Conclusion

- 10 years of MiniBooNE running (2002-2012)
- Extremely stable:
 - Neutrino rate/POT at 2% level
 - Energy scale stable within 1%
 - 6.5e20 POT in neutrino and 11.3e20 POT in antineutrino mode
- MiniBooNE measured cross sections for 90% of events in neutrino mode and 83% in antineutrino mode (when new antineutrino CCQE cross sections & NC elastic are included)
- Coming soon CC inclusive and antineutrino NC elastic cross sections
- Important measurements to fully understand the cross sections and nuclear models

Backup

10 years of running

01/Jan/08

31/Dec/08

31/Dec/09

31/Dec/10

01/Jan/12

31/Dec/06

- Detector and beam extremely stable
- Neutrino/POT within 2%

6.27e+20 v POT

1.13e+21 ⁷ POT

01/Jan/04

31/Dec/04

31/Dec/05

v/POT × 10 -17

160

140

120

100

80

60

40

20

- Detector calibration stable at 1% level
- 6.5e20 POT in neutrino and 11.3e20 POT in antineutrino mode

Transverse Enhancement Model

- Empirical model which modifies the magnetic form factors of bound nucleons to reproduce an enhancement in the transverse crosssection observed in electron-nucleus scattering attributed to the presence of meson exchange currents (MEC) in the nucleus
- Eur. Phys. J. C 71, 1726 (2011)