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What 1s nuSTORM?

Neutrinos from Stored Muons — Alan Bross Presentation on Saturday

¢

¢

High-Precision v interaction physics program.
v, and 'V, cross-section measurements.

Address the large Am? oscillation regime, make a major contribution
to the study of sterile neutrinos.

Either allow for precision study (in many . . MionDecayiRing Target
<

channels), if they exist in this regime. ;ff )

Or greatly expand the dis-allowed region. -~ 26m

Provide a technology test demonstration ( u decay ring) and u beam
diagnostics test bed.

Provide a precisely understood v beam for detector studies.

Change the conception of the neutrino factory.
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The nuSTORM Neutrino Beam

Wt 2V, +v, +et

W 2V, +V,+e

¢ nuSTORM will provide a very well-known (8 ¢(E) =1%)

¢ NnuSTORM will

beam of v and V.

provide a high-intensity

source of v, events!
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Practicality of nuSTORM Neutrino Spectrum
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v, Event Fractions in a vSTORM Near Detector

¢ v_produced by 3.8 GeV pu* beam.
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v-Nucleus Interaction Physics with nuSTORM
A partial sampling

¢ v, and v, cross-section measurements
v A UNIQUE contribution from nuSTORM
v Essentially no existing data

¢ ¥ production in v interactions
v Coherent and quasi-exclusive single wt® production

¢ Charged nt & K production
v Coherent and quasi-exclusive single st* production Combined with the

¢ Multi-nucleon final states .
& v-¢ scattering I'lght detector,

¢ v-Nucleon neutral current scattering OppOI‘tllIlity for

¥ Measurement of NC to CC ratio d t 1 d t d
¢ Charged and neutral current processes ctalied Studies

v Measurement of v, induced resonance production Of the hadronic
¢ Nuclear effects

¢ Semi-exclusive & exclusive processes
v Measurement of K, A & A-bar production

¢ New physics & exotic processes
v Testof v, - v, universality
v Heavy v
v eV-scale pseudo-scalar penetrating particles
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Why 1s Neutrino Nucleus Scattering Important?
What do we observe in our (neutrino oscillation) experiment detectors?

¢ The events we observe in our detectors are convolutions of:
YC-Iike (E) o ¢(E’ = E) ® OC,d,e..(E’ = E) ® Nucc,d,e..%c (E’ = E)

¢ O(E) is the energy dependent neutrino flux that enters the detector. Currently, with
traditional meson-decay-source neutrino beams, ¢(E) =10% absolute and = 7%

energy bin-to-bin accuracy. Significant contribution to systematics.

¢ 0.4 (E'=E) is the measured or the Monte Carlo (model) energy dependent
neutrino cross section off a nucleon within a nucleus.

¢ Nuc 4. 5. (E = E)— Nuclear Effects

¢ Nuclear Effects — a migration matrix that mixes produced/observed channels and
energy

¢ In general the interaction of a neutrino with energy E’ creating initial channel d.e...
can appear in our detector as energy E and channel c.

o Particularly fierce bias when using the QE hypothesis to calculate E and Q?!

¢ Y . (E)is the event energy and channel / topology of the event observed in the

detector. Appears to be channel chu(E may not bhave been channel c at interactipn.
orge . Mortin - Fermila



What are these Nuclear Effects Nuc_ 4. 5. (E'2E) in
Neutrino Nucleus Interactions? (Partial List)
A Migration Matrix

¢ Target nucleon in motion — classical Fermi gas model or the superior spectral
functions (Benhar et al.)

. [Multi—nucleon initial states: Short-range correlations, meson exchange currents.]

¢ Form factors, structure functions, resonance widths, parton distribution functions
and, consequently, cross sections are modified within the nuclear environment.
(Butkevich / Kulagin, Tsushima et al., Kovarik et al.)

~

o (Produced topologies are modified by final-state interactions modifying topologies
and possibly reducing detected energy and increasing wrong-sign background.

v Convolution of dc(nit) @ormation zone uncertainties@ n-charge-exchange/
N absorption probabilities and nuclear density uncertainties. )

¢ Systematics associated with each of these effects.

¢ Event Generators — like GENIE — try to include all these effects.
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How well off are we with v, Cross sections:
Range of Existing Model (MC) Predictions off C

Nulnt09 — Steve Dytman
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Example Model Uncertainties

Cross Section Model Uncertainties

Uncertainty 1o
M, (Flastic Scattering) + 254,
Hia (Flastic scattering) + 0%
Ma (CCQL Scattering) +256
-15%
CCOF Normalization 1205
-15%
CCQE Veclor Formn factor model onfolf
CC Nesonance Normalization + 20%
Ma (Resanance Praduction) 1 20%
My (Resonance Praduction) +10%
1pl production from vp / Ve non- I 305
resonant Interactions
1pi production from va /v p non- + 30%
resonanlt inleraclions
2pi production fram vp [ Va non- + 30%
resonant Interactions
2pi production from v /Vp non- + 0%
resonant Interactions
Madtiy Pauli blocking (CGQF) at low (O + 0%

(change PB momentum threshold)

Uncertainty 1o

Plon mean free path 1 20%
Nucleon mean free path + 20%
Pion tates — absorption + 30%
Pion fales — charge 1 50%
cxchanqge

Pion [ales — Flaslic + 109
Pion fates  Inelastic + 40%
Plon tates — plan + 20%
produclion

Nucleon fates — charge + 30%
exchange

Nucleon fates — Elastic + 30%
Nucleon lzles — Inelaslic 1 A0%
Nucleon fates — absorption + 20%
Nucicon fates — plan + 20%
production

AGKY hadronization model + 209%

¥ dislribulion

Delta decay angular Cn/off
distribution

Resonance decay + 509%

branching ralio lo pholon

*Intranuclear Rescattering Uncertainties

Hugh Gallagher

References: (1) www.genie-mc.org, (2) arXiv:0806.2119, (3) D. Bhattacharya, Ph. D Thesis (U.

Pittsburgh) 2009.
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What do we observe in our detectors?
Further implications for Oscillation Experiments

L 2 € Events we oDServe 11 our deteCtors arc convolutions ofl.

Yc—like (E) o (I)(E’ = E) @ Oc,d,e..(E’ = E) @ Nucc,d,e..%c (@

v —— effective 0 A(E)

¢ Experimentally, the convolution of initial cross section and nuclear effects are
combined into an effective cross section 0,*(E) that depends on incoming
neutrino energy spectrum and nuclear effects that populate the yield Y ~(E).

In a two-detector LBL oscillation experiment, neutrino flux entering the FD 1s
different than the neutrino flux at the ND due to geometry and oscillations. The

o (E) effective that should be applied to expectations (Monte Carlo) at FD is
NOT the same as that which we would measure at the ND.

¢ What would be 1deal is a measurement of the nuclear effects
migration matrix. Since we can’t 1solate that from cross section and
flux, the next best measurement would be a measurement of the
effective 0.A(E) for different well-measured incoming neutrino
spectra.
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How well off are we with v, Cross sections:
Ratios: Prediction/MiniBooNE Data — Nulntl2

Nulnt12 — Phil Rodrigues

Jorge G. Morfin - Fermilab
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Nuclear Effects can Change the
Energy Reconstruction for “QE” Events

In pure QE scattering on a nucleon at rest, the outgoing lepton

can determine the neutrino energy:

QMNEH — mi

E, =
2(MNn — E,, +p,, cosb,,)

However, not on nuclei.

Reconstructed energy i1s shifted to

lower values for all processes other

than true QE off nucleon at rest
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* 6 6 o o

*

Detailed Study by P. Coloma and P. Huber
arXiv 1307.1243

Disappearance experiment using CC QE-like signal events. T2K — 5 years; 850 QE

QE-like includes pion absorption and scattering off nucleon pairs. 1300 QE-like
E, 1s reconstructed from the observed muon which gives a lower E, for non-QE.
Give a quantitative estimate of this problem using: Ni*(a)=a « N7 + (1-a) x NFE-1e
o = 1 implies completely ignore nuclear effects while o = 0 implies you know/
model the nuclear effects completely.

The importance of a near detector to help normalize the signal is obvious. However
have not yet included different near and far incoming neutrino spectra.

Even with ND, a = 0.3 =1 o bias in parameters! Need accurate nuclear model!
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Advantage Number One of nuSTORM
The nuSTORM beam will provide a

very well-known (8 ¢(E) = 1%) beam of v and V.

¢ The events we observe in our detectors are convolutions of:
Yc—like (E) o {(I)(E’ = E)J @ Oc,d,e..(E’ = E) ® Nucc,d,e..%c (E, - E)

¢ Y_.(E)is the event energy and channel / topology of the event observed in the
detector. The errors on the three components create a nasty, 00zy morass!

¢ nuSTORM takes one of these convoluted components ¢(E’ = E)
essentially out of the equation: a very well-known (6 ¢(E) <1%)
beam of v and V.

¢ With a variable incoming v spectrum, nuSTORM can get a first
measurement of the energy dependence of:
o AME)=0_4. (E'=E)X) Nuc_,. 5.(E' =E)
¢ Combine with a high-resolution near detector with multiple
nuclear targets to provide detailed studies of the final states
including the vertex multiplicities and energy flow..

Jorge G. Morfin - Fermilab 15
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NnuSTORM Near Detectors

€ HighRes - High Resolution Straw-tube Magnetized Detector.

20m

GLUE

"RADIATOR"
700 an
350

(D) WALSAS NONIW

STT MODULE

STRAW LAYER \

STRAW LAYER

C REINFORCEMENT
| —

|+ B=04T
Density = 0.1 g/lcm3, 85% in the radiator foils.

Transition Radiation  #> e-/e+ ID = y (w. Kinematics)

dE/dx »> Proton, 11+/-, K+/- 1D
Magnet/Muon Detector »> pu+/-

= HiResMNu idea being developed within the LBNE collaboration

¢ A 1-2 ton fiducial liquid hydrogen/deuterium track sensitive
target upstream of HiRes for normalization. This could be a
bubble chamber.

Jorge G. Morfin - Fermilab 16



Resolutions in HiResMv

s P =0.1gm/cm”3
+ Space point position = 200

+ Time resolution = Ins

+» CC-Events Vertex: A(X,Y,Z) = O(100p)
« Energy in Downstream-ECAL = 6%/E

+ H-Angle resolution (~5 GeV) = O(| mrad)

+ M-Energy resolution (~3 GeV) ~ 3.5%
« e-Energy resolution (~3 GeV) ~ 3.5%

Relative resolution
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Parametrized calculation

Repeat with NOMAD configuration and checked against the Data and Geant-MC
(Agree within 15%)
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Scattering Measurements with nuSTORM + Near Detector

nuSTORM provides a well-known (0 ¢(E) = 1%) beam of v and V.
Ed Santos — Imperial College

HIRESMv - systematics
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Advantage Number 2 of nuSTORM

How well do we know cross sections: v, vs. v ?
Existing v, Cross Section Data

¢ What do we know about o, ,(E)? Mostly very low energy results.
v Reactor neutrinos studying Inverse Beta Decay
v Solar neutrino off deuterium (SNO)
v Stopping 7t/u decay neutrinos off higher A targets
v See Formaggio and Zeller Rev. Mod. Phys. 84, 1307-1341 (2012).

¢ One of few measurements of spectral shape of o reflects the upper
limit of most existing measurements, E < 50 MeV.

& 45
g 405 o KARMEN, PPNP 32, 351 (1994)

9 o o LSND PRC 64, 065001 (2001)
o 355 — Fukugita, et al.

12 - 12
v,‘C>e Ng_s_

1
N
o
AR AR LR RRRA LR LA R

20 25 30 35 40 45 50 55 60
E, (MeV)
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Where Are We with High-energy v, Cross Sections?

¢ NOWHERE! Need to measure the 0, ,(E) of multiple channels to
fully predict a spectrum at a far detector for LBL experiments.
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v We infer them from O'W(E) results. The validity of this
inference directly impacts the uncertainty of the measurements.
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What are the Differences o,,,(E) and o, (E)?

Quasi-elastic Scattering
Day-McFarland study: Phys.Rev. D86 (2012) 053003

¢ QE scattering dominates at low energies (2" oscillation maxima)
¢ Sources of possible differences and uncertainties - obvious:

v Kinematic limits from n / € mass difference.

v Radiative Corrections. This may be overestimated. Need full calculation.
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What are the Differences? A Production
Paschos — Schalla: arXiv:1209.4219

¢ Paschos-Schalla predicts the following differences in cross sections
where only the lepton mass term contributions are shown and any
differences in form factors are not yet included.

12

* s
& s %
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|
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¢ We need to measure these v, cross sections. nuSTORM sould do it.
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Ditterences between v_or v,
Meson-exchange Current Contributions — Marco Martini

Hadronic part (nuclear response functions) is the same for v or v, cross section.

However, the lepton tensor changes = the relative weight of the nuclear
responses in the several channels may change.

The double ratio suggests the effect on the v, /v, cross section ratio is < 5%
nuSTORM could measure this difference v, vs. v, .
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What could a nuSTORM Scattering analysis add?

Provide significant input to knowledge of electro-weak physics.

¢ Use the unique qualities of the nuSTORM beam meaning the flux
of v, and the fantastic knowledge of absolute and relative flux.

¢ Need an experiment that has a track sensitive H and D target
(bubble chamber) upstream of a high-resolution near detector
with multiple nuclear targets to provide detailed studies of the
final states including the vertex (multiplicities and energy flow.

¢ However, this 1s not the same nuSTORM approved by the Fermilab
PAC. This requires a high-resolution near detector and,
preferably, a H/D Bubble Chamber.

¢ Now forming an independent nuSTORM neutrino
interaction collaboration for the nuSTORM {facility!
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BACKUP
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High Resolution Near Detector

¢ NOMAD-Ilike resolution in HiRes detector allows to:

Vv Measure absolute flux using

. Yébob o Geve |||
V - e elastic scattering — LA T

1171

v Measure quasi-elastic scattering

v NC vs CC events (NOMAD T
with 90% purity)
v Coherent Figurc 10: A vy-QE taxdidats in NOMAD.
v Comparison sin2 6 , from DIS oo
and e = Ve il l |
v 77 different physics topics! o {» J--...\ |
s Ilhfx} pIs N b
LR N\
(2% '\-\,,_, 4
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A v, CC candidate in NOMAD
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Pion Production Challenges

VN—=UTN

¢ State of the art calculations describe better the data without FSI

do/dT_+ (107° cm“/GeV)

do/dpge (108 cm?/GeV)

T T I T T T
12 t before FSI i — Full-C—2H~Coh
afterF Sl = 4B s i
= | ‘{» -~ NoTFSI
o \ A + MiniBooNE
-’Sa I ] g
4 L Ez “+}_1l'_‘,{_<
= S R vl !
= . =Ll
I Lalakulich@NulInt12 Hernandez@Nulnt12
0 L L 1 1 0 1 ] 1 1
0 0.1 0.2 0.3 04
0 0.1 02 0.3 0.4 0.5 I (Gev)
Ty (Gev)
4 = . . 4 I - '
before FSI I — Tull ]
. after FSI @ [ e |
_ MiniBooNE 170 —=— : | {, T MmBooNE| |
2t %\ theoretical band: Sk ¥ AT .
\{.. ANL and BNL inputs Eu W l
1t Ry % W " l\ .
Sy = | RS,
g
0 0.2 0.4 0.6 0.8 1 " (GeV) !
PR (GeV)
Lalakulich@Nulnt12 Hernandez@Nulnt12
Jorge G. Morfin - Fermilab 29



Nuclear Effects and Oscillation Measurements

Ulrich Mosel using his Giessen Boltzmann-Uehling-Uhlenbeck
(GiBUU) Transport Model looking at T2K
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What are the Differences o,,,(E) and o, (E)?

Quasi-elastic Scattering
Day-McFarland study: Phys.Rev. D86 (2012) 053003

¢ Sources of possible differences: form factor uncertainties entering through lepton mass
alterations - much more subtle:

v Form factor contributions — both Axial and Pseudoscalar

v Second class current contributions to vector and axial-vector form factors

¢ Possible contribution to CP uncertainties: effect on the FF could be different for v and v
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What are the Differences? A Production

Paschos — Schalla: arXiv:1209.4219

¢ Manny and his student have investigated v, and vV differences in A production in
the low-Q (Q%= m_?) region where PCAC dominates the axial contribution.

¢ AtE=1-2GeV, V part and V/A interference same size = cancel for v
¢ Use the Adler-Nussinov-Paschos model for nuclear corrections.
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