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Main Injector Particle
Production (MIPP) Experiment

Experiment located in MC7 at FNAL
RICH

ToF Detector

!

’ » Goal: collect comprehensive
hadron production cross-
section data set with particle
Id using various beams and

targets (thick and thin).

Detector

Ckov
Detector
EM &
_ | Hadronic
TPC - Wire Calorimeters

, Chambers
Rosie
Targe Magnet
Beam JGG  Nearly all detectors used in MIPP were
Ckov Magnet  taken from previous experiments.
e Full acceptance spectrometer * Designed for excellent particle ID (PID)

separation (2-30)

* Two analysis magnets deflect in
opposite directions

Momentum (GeV/c) 1 10 80
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Some Motivation...
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* Highly correlated models give predictions that differ up to 20%
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Some Motivation...
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Some Motivation...

Fractional uncertainty in Fe cross section
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 Despite recent progress and measurements from hadron production experiments
over the past 10+ years, we’re still talking about 10-20% uncertainties in the
hadron production off the NuMI target
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Data Sets

* MIPP began its physics run in December
2004 and ran until February 2006.

- DAQ rate was ~25 Hz, with MIPP receiving
~5% of Ml beam.

« Data collected:

~1.6 x 108 events of Main Injector 120 GeV/c
rotons on a spare NuMI target.

~3.2 x 106 11's, K’s and p’s at 120, 60, 35 an
20 GeV/c on 1-2% AL C and Be targets.
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o ~7/ X108 17's, K’s and p’s at 85, 60, 20
and 5 GeV/c on 1% AL LH2 target.

o ~4 x 106 1's, K's and p’s at 35, 60 and
120 GeV/c on Bi and U targets.
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Global Track Reconstruction

MIPP (FNAL E907)
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TPC track segments are matched to downstream drift chamber hits, momentum is

determined from bend in both magnets.
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N
Momentum Resolution and Bias

Resolution vs. Iog1 0(p) Momentum Bias vs Log1 o(pF_t)
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o Black points determined by fitting central peaks of slices of dp/p to
Gaussian.

o Momentum resolution is < ~5%
o Bias < ~2%. Correction is applied and has a very small uncertainty.
o Transverse momentum resolution is < 0.02 GeV
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Absolute Momentum Scale

NuMI MC NuMI Data Bkg-Subtracted Inv. Mass Distribution, NuMI MC, dz Cut
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o After momentum bias correction, single proton beam data and MC agree.

o Reconstructed KO invariant mass using tracks with p <2 GeV/c indicates
systematic offset of ~-1%.
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TPC PID Performance

TPC <dE/dx> vs. P, Full NuMI Data Set
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TPC <dE/dx> for 0.30 < P < 0.33 GeV/c
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o TPC data are calibrated such that <dE/dx>(m) is 1 for p = 0.4 GeV/c and
give expected Bethe-Bloch functional form.

o <dE/dx> resolution ~10%.

o Clean 1, p separation between 0.2 and 1.2 GeV/c.
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ToF PID Performance

ToFAt(n), All Bars, 13625 <= Runs < 15694

1 Data-driven calibration
" improved timing resolution by

about a factor of 2.5

ToF nt Distribution, p < 1.1 GeVic
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May ignore ToF PID information
in this analysis.



Ckov PID Performance

Ckov Detector Response

o Since all mirrors have a different
response, each measurement of Npe is
normalized to that of a =1 particle.

o Pion “turn-on” clearly visible; proton “turn-
on” also visible in slices of momentum.

qxNpg/ N,

o Shape of normalized response dist. in MC
agrees very well with data.

o Data-driven calibration of 96 mirrors found
detector response gives <10 pe/pB=1
track.

® Data 6.3 < p <9 GeV/c | o o 13.8 < p < 18.3 GeV/c

- MC:all
pions °

kaons °
protons

o Must only
consider
“Isolated” tracks
passing through
mirrors; reject
~50% of Ckov
PID data.

X

- pions
- kaons
protons

’

10°




Will ignore Ckov PID.Information
in this analysis.



RICH PID Performance

| PMT Arrayw

20

oy
-

-20

o
IIIIIIIIIIIIIII

RTENN A NI A A O
Radius (cm)

(\
-

_40 1 1 | 1 1 L 1 | 1 1 L 1 |

| PMT Arrayw

10

20

-20

o
T l T I T 1TT I T T1
| I L1 1 | L1 1 | L1 1

1 1 | 1 1 1 1 | 1 1 1 1 | 1
40 -50 0 50

X (cm)

o Ckov light ring formed on array of ~2300 1/2” PMTs.
o Ring radius ~ Ckov angle ~ velocity.
o 30 w/K and 3o p/K separation up to 80 GeV/c

Jonathan Paley, ANL HEP Division
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NuMI Target Analysis



* Measure pion yield off surface of
NuMI target (120 GeV/c p + NuMl).

e N(rt*)/POT binned in (p,pr),
currently we have 76 bins.

Bin Numbers vs. (p,,p.)
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Estimated Statistical Uncertainties
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Maximum statistical uncertainty Maximum statistical uncertainty
based on number of TPC tracks. based on tracks matched to RICH rings.

* To get an idea of how well we can do in each bin, we assume 70% of
tracks that have PID information is a pion.

» Expected statistical uncertainties are below 6% everywhere for positively
charged tracks with TPC and RICH PID information. Negatively charged
tracks are slightly worse.



Acceptance Corrections

Acceptance, q>0 PID Acceptance, <0
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* Geometric acceptance (fraction of true particles matched to a
reconstructed track) is typically 75-85%

* PID acceptance is the fraction of reconstructed tracks that made it into a
PID detector. Acceptance for TPC tracks is 100% by definition.
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TPC PID Measurements

* log(<dE/dx>) distributions appear to be Gaussian in bins of prtor, and
“very” Gaussian in most (pz,pt) bins.

* Approach is to fit these distributions to sum of 4 Gaussians
* TPC fits: function is 3-Gaussian sum, kaons are negligible

N(z) = A, (fe7T exp((mgfge) ) exp(($;:£) ) + for exp((x;(fg) ))
e “x” = log(<dE/dx>)

o fur = Ac/Ar, Fon = Ap/An

« widths are constrained to be “physical”’, means are constrained to be
close to expected values from MC

* Positive and negative particle distributions are fit independently for now.
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Data TPC <dE/dx> Distribution, q >0, 1.00 <= p, < 1.20, 0.15 <= p_< 0.25
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of the distribution effects
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RICH PID Measurements

* These measurements can trivially be converted to m2 distributions, but
do not appear to be very Gaussian.

e Approach is to “cut and count”. Split m2 distribution in each (pz,pT) bin
into three regions: 1 “mostly” signal + 2 “mostly background” sidebands.

__ E 2 E : 2
1 1

Data

v N B,
Np, = N; —biN; _ bi = =
MC
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Data RICH m? Distribution, g<0,6.00 < p, <= 8.00, 0.15< p_<= 0.25
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 MC is used to determine ranges for cut-and-count approach, as well as to
estimate backgrounds in the 3 regions defined by the red lines.

* Error shown here is combined statistical and systematic (background
¢ Subtraction).
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Uncorrected x Yields and Uncertainties
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 Uncorrected for

acceptance, etc.

 Uncertainties are

combination of
statistics and
systematic of
contribution from
non-pion
background

e Relative

uncertainties are
mostly < 10%

 Uncertainties >

10% dominated
by statistics.



True (p_,p_) Bin

Reco — True Unfolding
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 Make use of Root’s TSVDUnfold

* Assume that N(pz,pr)i*¢® — N(p.,pr)i'™ is good approximation for
N(TC)iReCO — N(n)iTrue

 MC study shows that true and unfolded distributions agree to within 1%.
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Summary

* MIPP collected several millions of events of i, K and p beams at various momenta
incident on various targets, 1.6 x 10° 120 GeV protons on an actual NuMI target.

* All MIPP sub-detector systems have been calibrated and the MC tuned to the data.
MC/Data PID agreement looks reasonable, but some further fine-tuning is needed.

e Most pieces of the analysis of the NuMI target data are in place for measurement of
pion yield across a very broad range of momenta from ~0.5 - 80 GeV/c (> 60 bins of

(er pT))

e Typical statistical uncertainty in each bin of (p,,pr) is <10%
e Systematics still need to be assessed, but expected to be well below 10%
* Plan to also determine kaon production above 20 GeV/c

e Promising independent K% analysis underway (Amandeep Singh)
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