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Outline 

 Experimental information on X(3872) before BESIII 

 Molecular model: a critical review 

• Production rate 

• Decay pattern 

 X as a mixing state of 𝜒𝑐1
′  and 𝐷0𝐷 ∗0 + 𝑐. 𝑐. 

• Spectrum 

• Scattering amplitudes v.s. line shapes 

 Production of X 

• Production in 𝐵 decays 

• Production in 𝑝𝑝 /𝑝𝑝 collision 

• Production in 𝑒+𝑒− annihilation 

• Production in the E1 transitions of higher chamonia 

 Summary 
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Experimental information 

 1st observed by Belle Collaboration in 

       𝐵 → 𝐽/𝜓𝜋+𝜋−𝐾                                        Belle’03 

 Mass, width and quantum numbers: 

• 𝑚𝑋 = 3871.68 ± 0.17 MeV                           PDG’12     

𝑚𝑋 − 𝑚𝐷0𝐷∗0 = −0.142 ± 0.220 MeV       Tomaradze et al.’12 

• Γ < 1.2 MeV       CL = 90%                            PDG’12 

• 𝐽𝑃𝐶 = 1++ or 2−+ 

𝐽𝑃𝐶 = 2−+ is favored by the 𝜔 → 𝜋+𝜋−𝜋0mass spectrum in 

𝐵 → 𝑋 3872 𝐾 → 𝐽/𝜓𝜔 𝜋+𝜋−𝜋0 K  [BaBar’10], but is 

excluded by the recent analysis on the angular correlations in 

𝐵 → 𝑋 3872 𝐾 → 𝐽/𝜓𝜌 𝜋+𝜋− K  by LHCb [LHCb’13] 
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Experimental information 
 Decay pattern: 

• Well-established decay modes:  

𝐽/𝜓𝜌 𝜋+𝜋− , 𝐽/𝜓𝜔 𝜋+𝜋−𝜋0 , 𝐷0𝐷 ∗0/𝐷 0𝐷∗0/𝐷𝐷 𝜋, 𝐽/𝜓𝛾 

Relative ratios of these 4 modes:  1: 1: 10: 0.3           PDG’12 

 Large isospin violations     

R𝜌/𝜔 = Br 𝑋 → 𝐽/𝜓𝜌 /Br 𝑋 → 𝐽/𝜓𝜔 ≈ 1 

 Br 𝑋 → 𝐽/𝜓𝜌 = Br 𝑋 → 𝐽/𝜓𝜋+𝜋− ≡ Br0 < 9% 

 B-production: 

     1 × 10−4 < Br 𝐵 → 𝑋 3872 𝐾 < 3.2 × 10−4  BaBar′05 

     Br 𝐵 → 𝑋 3872 𝐾 Br0 = 8.6 ± 0.8 × 10−6   PDG’12 

2.6% < Br0 < 9% 
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Experimental informations 
 Hadro-production  
• Large production rate:  

𝜎 𝑝𝑝 →𝑋 Br0

𝜎 𝑝𝑝 →𝜓′

𝜖𝜓′

𝜖𝑋
= 4.8 ± 0.8 %  CDF’04 

• Similar behaviors to 𝜓′ production in 𝑝𝑇 distribution and … 
   D0 PRL’04                                     CMS arXiv:1302.3968 

a. 𝑝𝑇 > 15 GeV  b. …                Ratio to 𝜓′ is not depend on 𝑝𝑇 
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Molecule models 

  X(3872) is a loosely bound state of 𝐷0𝐷 ∗0/𝐷 0𝐷∗0 

• The mass, 𝐽𝑃𝐶  and 𝑅𝜌/𝜔 …… can be understood naturally. 

 The large production rate seems to be questionable 

 Naively, 𝜎 𝑋 ∼ 𝑘0
3,  𝑘0 = 2𝜇𝐷𝐷∗|𝐸𝑏| < 40 MeV 

 Explicit calculations [Bignamini et al, PRL’09]: 

𝜎CDF
th 𝑋 < 0.085 nb      𝑣. 𝑠.     𝜎CDF

ex 𝑋 Br0 = 3.1 ± 0.7 nb 

 Artoisenet and Braaten [PRD’10] proposed that the rescattering 
effects of  𝐷0𝐷 ∗0 may enhance the rate to values consistent with 
the CDF data if the upper bound of the relative momentum of 
𝐷0𝐷 ∗0 in the rescattering is as large as 3𝑚𝜋 ≈ 400 MeV 

 Similarly, small B-production rate [Braaten, Lu, Kusunoki’05-06] 
𝐵𝑟 𝐵+ → 𝐾+𝑋 3872 = 0.07 − 1 × 10−4   for  𝑘0 ∼ 40 MeV 

[Tornqvist’04, Voloshin’04, Swanson’04, Braaten’04, …] 
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Molecule models 
  Decay pattern 

• 𝐷𝐷𝜋 decay mode [Swanson; Voloshin; Fleming, mehen, ……] 
𝛤 𝑋 → 𝐷0𝐷 0𝜋 ∼ 2𝛤 𝐷∗0 → 𝐷0𝜋 ∼ 100 keV 

• Radiative decays: [Swanson’04] 

 

 

 

 
𝛤 𝑋 → 𝐽/𝜓𝛾 ≈ 8 keV      𝛤 𝑋 → 𝜓′𝛾 ≈ 0.03 keV 

                  
𝛤 𝑋→𝜓′𝛾

𝛤 𝑋→𝐷0𝐷 0𝜋
∼ 10−4    𝑣. 𝑠.    10−1

𝑒𝑥    [BaBar’08] 

• 𝐽/𝜓𝜌(𝜔) decay mode [Swanson’04] 

                           𝛤 𝑋 → 𝐽/𝜓𝜌(𝜔) ∼ 1-2 MeV 
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𝜌/𝜔 

𝐽/𝜓 

𝐷 

𝐷∗ 

𝛾 

𝛾 𝜓(′)  



𝜒𝑐1
′ − 𝐷0𝐷 ∗0mixing model 

 𝑋 3872  is a mixing state of 𝜒𝑐1
′  and 𝐷0𝐷 ∗0/𝐷 0𝐷∗0 

 Both the two components are substantial, and they may play 
different roles in the dynamics of 𝑋 3872 . 

1. The short distance (the 𝑏- and ℎ𝑎𝑑𝑟𝑜-) production and the 
quark annihilation decays of 𝑋 3872  proceed dominantly 
through the 𝜒𝑐1

′  component. 

2. The 𝐷0𝐷 ∗0 component is mainly in charge of the hadronic 
decays of 𝑋 3872  into 𝐷𝐷𝜋/𝐷𝐷𝛾 as well as 𝐽/𝜓𝜌 and 𝐽/𝜓𝜔. 

3. The long distance coupled-channel effects between the two 
components could renormalize the short distance dynamics by a 
product factor 𝑍𝑐𝑐 , the equivalent probability of 𝜒𝑐1

′  in 𝑋 3872 . 

Meng, Gao and Chao, PRD_87_074025 (2013) [hep-ph/0506222] 
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Mixing state: Decay pattern 
 𝜒𝑐1

′  induced decay modes 

• Radiative decay modes  
 

 

 

• Others 

 

 

 𝐷𝐷∗ induced decay modes 

      𝛤 𝐷0𝐷 0𝜋 ∼ 0.5-1 MeV    𝛤 𝐽/𝜓𝜌(𝜔) ∼ 50-100 keV    Meng & Chao’07 

Which could not be separated from the LD evolution amplitude, but 

can be incorporated in fitting the experimental line shapes. 
9 

1 MeV 

 keV 
 be relavant to Chengping’s talk 
Dubynskiy & Voloshin, PRD’08 



Specrum: Charmonium 

 Quark-level picture 

 

 

 

Quark-pairs creation  ⇒  Screening  the linear potential 

⇒ Screened (unquenched) potential model [Chao & Ding & Qin’92] 

 Hadron-level picture 

 

 

      Coupled-Channel models ⇒ mixing between 𝐻𝑐𝑐  and 𝐷𝐷  

Which have been considered even in the Cornell model [E. Eichten 

et al’78]. 
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𝑐 

𝑐  

𝑞 
  

𝑞  
  

    

𝐷 
  

𝐷  
  

𝐻𝑐𝑐  



Specrum: Screened potential model 
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Li & Chao, PRD_79_094004 (2009)  



Specrum: SPM v.s. CCM 

 SPM ≈ CCM in the global features. 

 CCM is more adept in investigating the open-charmed threshold 
effects. 

       12 

Li & Meng & Chao, PRD_80_014012 (2009)  



Specrum: S-wave threshold v.s. X(3872) 

 𝑀 − 𝑀0 + 𝛱 𝑀 = 0        𝛱 =   𝑑3𝑝
𝐵𝐶,𝑝 𝐻𝑄𝑃𝐶 𝜓0

2

𝐸𝐵𝐶 𝑝 −𝑀−𝑖𝜖𝐵𝐶  
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Li & Meng & Chao, PRD_80_014012 (2009)  

  

𝐵 
  

𝐶 
  

𝜓0 
𝛱 𝑀  

𝜓0 𝐵𝐶, 𝑝 𝐻𝑄𝑃𝐶 𝜓0
2

∼ Γ 𝜓 → 𝐵𝐶

∼ 𝑀 − 𝑀𝐵 − 𝑀𝐶

2𝐿+1
2  

  S-wave threshold effect: 𝐿 = 0        𝐸 = 𝑀 − 𝑀𝐵 − 𝑀𝐶 ⇒ 0 

𝛱 𝐸 ∼ 𝐸,  d𝛱 𝐸 /d𝐸 ∼ 1/ 𝐸 

  ⇒ S-wave cusp  

  ⇒ “attracting” the mass of the bare 
state to the threshold 

• 𝑀𝜒𝑐1
′ ∼ 𝑡ℎ𝐷𝐷∗: 

 ∆𝑀 ∼ 15 MeV ⇔ ∆Re𝛱 ∼ 70 MeV  
⇔ ∆𝑀0 ∼ 85 MeV 

−Re𝛱𝜒𝑐1
′ 𝑀  

𝑀 − 𝑀0 𝜒𝑐1
′  



X(3872) in the CCM: Pole Trajectory 
 Near-threshold expansion 

           𝛱 𝐸 ≈ 𝛱 0 + 𝑖𝑔𝑘 𝐸 /2,   𝑘 𝐸 = 2𝜇𝐸 + 𝑖0+   

     Solving         𝐸 − 𝐸0 + 𝛱 0 + 𝑖𝑔𝑘 𝐸 /2 = 0 

      𝑘± = −
𝑖𝑔

2
𝜇 ± −

𝑔2

4
𝜇2 − 2𝜇 𝛱 0 − 𝐸0 + 𝑖0+  
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Pole trajectory v.s. 𝑔 

 

Fig. taken from 
Danilkin & Simonov, PRL’10 

(See  also Tornqvist, PRD’95) 



X(3872) in the CCM: Pole Trajectory 
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 Pole trajectory v.s. 𝑔 

• 𝑔 = 0: bare BW state 

• 𝑔 is fine tuned: 

Two near threshold poles ⇔ mixing-
induced virtual state 

(Pole counting rule    Morgan, NPA’92) 

• 𝑔 is sufficient large: 

Bound state ⇔ molecule? 

 

 
𝛱 𝐸 = −𝑔 ⋅ 𝐿 𝐸  



Size of 𝜒𝑐1
′  in the X(3872) 

 For the bound state [Weinberg’65, Baru et al’04] 

                        𝑍 =
𝜕𝛱 𝐸

𝜕𝐸
 
𝐸=−𝜖

≈
1

1+
𝑔

2 2
𝜇/𝜖

      𝜖→0     
0! 

          𝑔𝑅 = 𝑍 ⋅ 𝑔 = 2 2 𝜖 𝜇 1 − 𝑧        see Fengkun’s and Qian’s talks 

 spectrum density:    𝑤 𝐸 =
𝑔𝑘/2𝜋

𝐸−𝐸0+𝛱 𝐸 2  

 spectrum sum rule:     𝑍 +  𝑤 𝐸 𝑑𝐸
∞

0
= 1 [Baru et al’10] 

 Inelastic decay modes: 
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𝐷 
  

𝐷  
  

𝐻𝑐𝑐  
𝐿𝐻𝑠 

 Generalized spectrum density: 

                      𝑤 𝐸 =
𝑔𝑘+Γ0 2𝜋 

𝐸−𝐸0+𝛱 𝐸 +𝑖Γ0 2 2 ,    𝑍 =  𝑤 𝐸 𝑑𝐸
+∆𝐸

−∆𝐸
 

Γ0 may make the X spending more time in the short distant 𝑐 𝑐 configuration [Li & Meng 
& Chao, in progress] 

Γ0 ∼ 1𝑀𝑒𝑉 ∼ 𝜖 



Scattering amplitude 
 Coupled-channel amplitude  

𝐹 𝐸 =
𝑔/2

𝐸 − 𝐸0 + 𝛱 0 + 𝑖𝑔𝑘 𝐸 2 + 𝑖Γ 𝐸 2 + 𝑖Γ0 2 
 

 Fitting the experimental line-shapes: 

• Vitual state poles are favored [Hanhart et al’07] 

• With nonzero Γ0, two near threshold poles are favored [Zhang & 

Meng & Zheng’09] 

• With Γ0 = 1 ∼ 2 MeV [Kalashnikova & Nefediev’09] 

𝑍 =  𝑤 𝐸 𝑑𝐸
+10 Me𝑉

−10 MeV

= 0.3 ∼ 0.5 
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Scattering amplitude v.s. line shape 
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Meng & Sanz-Cillero & Shi & Yao & Zheng, in preparation 

Fit I Fit II Fit III 

Amplitudes C.C. + B.C.  Coupled-channel Bubble chain 

𝜒2 𝑑 . 𝑜. 𝑓. 44.1/42 49.7/43 83.3/46 



Production of X(3872) 
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General factorization formula 

• Energy scales:  
𝑝𝑇 , 𝑚𝑏 , 𝑚𝑐 ≫ 𝑚𝑐𝑣, 𝑚𝑐𝑣

2, 𝛬𝑄𝐶𝐷 ≫ 𝜖, Γ𝑋~1 MeV 

                 𝑐𝑐  production   𝜒𝑐1
′ production       Binding & Decay 𝐿𝐷  

• Factorization I:  

𝜎 𝑋 𝐽/𝜓𝜋+𝜋− = 𝜎 𝜒𝑐1
′ ∙ 𝑘, 𝑘 = 𝑍𝑐𝑐 Br0 

• Factorization II: NRQCD  Bodwin & Braaten & Lepage’95 

𝑑𝜎 𝜒𝑐1
′ =  𝑑𝜎 𝑐𝑐 𝑛

𝑂𝑛
𝜒𝑐1

′

𝑚𝑐
2𝐿𝑛

𝑛

 

𝑛 = 𝑃3
1

1
 & 𝑆3

1
8

 at leading order in 𝑣 for 𝜒𝑐1
′  production 
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Production in B decays 

• Theory:  [Meng, Gao and Chao, PRD_87_074025 (2013) [hep-ph/0506222]] 

      Input: 𝑅2𝑃
′ 0 2 = 𝑅1𝑃

′ 0 2 = 0.075 GeV5 

Br 𝐵 → 𝜒𝑐1
′ 𝐾 Br 𝐵 → 𝜒𝑐1𝐾 = 0.75 ∼ 1 

Br 𝐵 → 𝜒𝑐1
′ 𝐾 = 2 ∼ 4 × 10−4 

• Fits: [Kalashnikova & Nefediev PRD’09] 

Brfit 𝐵 → 𝜒𝑐1
′ 𝐾 = 3.7⎼5.7 × 10−4 

• Experimental data: 

Br 𝐵 → 𝑋 𝐽/𝜓𝜋+𝜋− 𝐾 = Br 𝐵 → 𝜒𝑐1
′ 𝐾 ∙ 𝑘 

                                  = 8.6 ± 0.8 × 10−6             PDG’12 

∴ 𝑘 = 𝑍𝑐𝑐 Br0 = 0.018 ± 0.004 

 With a modest value Br0 = 5%    ∈ 2.6%⎼9%  

                           𝑍𝑐𝑐 = 28%⎼44      (𝑍fit = 0.3 ∼ 0.5 Kalashnikova’09) 
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Production in B decays 

• Comparing with exparamental data:  

      Input:Br 𝐵 → 𝜒𝑐1
′ 𝐾 = BrPDG 𝐵 → 𝜒𝑐1𝐾 ,  𝑘 = 0.18 
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Br𝐢 ⋅ Br0 ⋅ 106 
𝑖 = 

Predictions data 

𝐵+ → 𝑋𝐾+ 8.6 ± 0.4 8.6 ± 0.8          PDG’12 

𝐵0 → 𝑋𝐾0 7.1 ± 0.5 4.4 ± 1.3          PDG’12 

𝐵+ → 𝑋𝐾∗+ 5.4 ± 1.0 

𝐵0 → 𝑋𝐾+𝜋− 6.8 ± 0.7 8.5 ± 1.3   Chenping’s talk 

𝐵0 → 𝑋𝐾∗0 4.0 ± 0.7 3.7 ± 1.0   Chenping’s talk 
𝐵𝑟 𝐾∗0 → 𝐾+𝜋− = 2/3 



Production at hadron collider 
• NRQCD Factorization:  [Bodwin & Braaten & Lepage’95] 

                      𝑑𝜎 𝑝𝑝 → 𝜒𝑐1
′ =  𝑑𝜎 𝑐𝑐 𝑛

𝑂𝑛
𝜒𝑐1

′

𝑚𝑐
2𝐿𝑛𝑛  

                   =   𝑑𝑥1𝑑𝑥2𝐺𝑖/𝑝𝐺𝑗/𝑝𝑖,𝑗,𝑛 𝑑𝜎 𝑖𝑗 → 𝑐𝑐 𝑛 𝑂𝑛
𝜒𝑐1

′

 

𝑛 = 𝑃3
1

1
 & 𝑆3

1
8

 at leading order in 𝑣 for 𝜒𝑐1
′  production 

 Molecule model :  Artoisenet & Braaten, PRD’09 

𝑑𝜎 𝑝𝑝 → 𝑋𝐷0𝐷 ∗0 = 𝑑𝜎 𝑐𝑐 𝑆3
1
8

𝑂
𝑆3
1
8

𝐷0𝐷 ∗0
 

 Different long distant matrix elements 

 Different combination of the 𝑐𝑐  channels 

 One can compare the two models with the help of the CMS data 
on the pT distribution! 
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Production at hadron collider 

 NLO calculations: 

• Inputs: Ma & Wang & Chao’11 (MWC’11) 

𝜇𝑟 = 𝜇𝑓 = 𝑚𝑇 = 𝑝𝑇
2 + 4𝑚𝑐

2, 𝜇𝑁𝑅 = 𝑚𝑐 = 1.5 ± 0.1 GeV 

𝑅2𝑃
′ 0 2 = 𝑅1𝑃

′ 0 2 = 0.075 GeV5 

• To compare our following results with the available ones for 𝜒𝑐1 

production [MWC’11], we parameterize the matrix elements as 

         𝑟 = 𝑚𝑐
2 𝑂

𝑆3
1
8

𝜒𝑐1
′

/ 𝑂
𝑃3

1
1

𝜒𝑐1
′

     (𝑟1𝑃 = 0.27 ± 0.06, MWC’11) 

• The cross section in the 𝜒𝑐1
′  production mechanism is a simple 

function of 𝑟, 𝑘 and 𝑝𝑇 
24 

Meng & Han & Chao, arXiv:1304.6710 



Fit to the CMS pT distribution 

 𝜒𝑐1
′  production mechanism: 

𝑟 = 0.26 ± 0.07,       𝑘 = 0.014 ± 0.006 
• The central values correspond 𝜒2/2 = 0.26 

• The value of 𝑟2𝑃 for 𝜒𝑐1
′  is almost the same as that for 𝜒𝑐1 1𝑃 : 

          𝑟1𝑃 = 0.27 ± 0.06 [MWC’11] 

which strongly suggests that X(3872)  

be produced through its 𝜒𝑐1
′   

component at short distance                 

 Molecule production mechanism: 

 𝑂
𝑆3
1
8

𝐷0𝐷 ∗0
Br0 = (6.0 ± 0.6)10−5 GeV3 

            𝜒2/3 = 1.03 
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Meng & Han & Chao, arXiv:1304.6710 



Predictions v.s. CDF/LHCb data 

Inputs:       𝑟 = 0.26, 𝑘 = 0.014;  𝑂
𝑆3
1
8

𝐷0𝐷 ∗0

Br0 = 6.0 × 10−5 GeV3 

 CMS + CDF data favor the 𝜒𝑐1
′  production mechanism 

• Same forward rapidity region 

• Almost same gluon energy: 𝑠 = 𝑥1𝑥2𝑆 ∼ 2𝑃𝑇 

 Test the universality and the evolution of the gluon PDF 

 CMS + LHCb data favor the molecule production mechanism 

• less meaningful since the predicted pT distribution at CMS 
is almost inconsistent with the data. 
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Meng & Han & Chao, arXiv:1304.6710 

Data 𝜒𝑐1
′  mechanism molecule 

𝜎CMS/nb 1.06 ± 0.19 1.09−0.12
+0.08 0.89 ± 0.09 

𝜎CDF/nb 3.1 ± 0.7 2.5 ± 0.7 1.1 ± 0.4 

𝜎LHCb/nb 5.4 ± 1.4 ⋅ 0.8 9.4 ± 2.2 4.0 ± 1.3 



Single parameter fit 
 Fitting 𝑘 to  the CMS 

data with fixed 𝑟 

 Fitting 𝑘 to  

𝐵 decay data 
Kalashnikova & Nefediev PRD’09 

∴ 𝑘 = 𝑍𝑐𝑐 Br0 = 0.018 ± 0.004 

 Window in the table:        𝑟 = 0.20-0.26 

 The consistency of the CDF data with our prediction is better, 

but that for the LHCb data is worse. 

 Similar results were obtained in [Butenschoen & He & Kniehl, 

arXiv: 1303.6524v2] 

3.1 ± 0.7 nb CDF
ex  

5.4 ± 1.4 nb LHCb
ex ∙ 80% 
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Production in 𝑒+𝑒− annihilation 

 𝑒+𝑒− → 𝛾𝑋 𝑋 = 𝜂𝑐 , 𝜒𝑐𝐽 … …   

• NLO at 𝑆 = 10.6 GeV: Li & He & Chao’09  

𝜎 𝑒+𝑒− → 𝛾𝜒𝑐1
′ = 18 fb 

Search X(3872) at Belle (711 fb−1 data sample) 

𝑁 𝛾𝑋 → 𝛾𝜇+𝜇−𝜋+𝜋− ∼ 10 

• NLO at 𝑆 = 4 − 5 GeV: 𝜎 ∼ 1/𝑆2 

  Chao & He & Li & Meng, arXiv: 1310.8597 

• 𝑚𝑐 = 1.5 GeV 

  Li & Xu &Liu & Zhang, arXiv: 1310.0374 (see Guangzhi’s talk) 

• 𝑚𝑐 = 𝑀𝑋/2 

• Relativistic corrections are included 
28 



Production in 𝑒+𝑒− annihilation 
 LO (pure QED process) 

𝜎 𝜒𝑐 ∼
1

1 − 𝑟
, 𝑟 = 2𝑚𝑐

2/𝑆 

⇒ near-threshold singularity 

29 

 QCD pollution in the near-threshold region 

The Coulombic gluons need to be resummed 

⇒ E1 transitions of resonances 

𝑐 

𝑐    
Soft 𝛾 

Coulombic 𝑔 

… … 

⇒ 𝜎 𝑚𝑐 = 1.5GeV  might be viewed as the lower limit of the 

continuum contribution (without resonance contribution)  



Production in 𝑒+𝑒− annihilation 
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Chao & He & Li & Meng, arXiv: 1310.8597 

𝜎 𝛾𝑋 𝐽/𝜓𝜋+𝜋− = 𝜎 𝛾𝜒𝑐1
′ ⋅ 𝑘 ∼ 0.01 pb ≪ 𝜎𝑒𝑥 ∼ 0.3 pb 

Resonance contributions should be dominant! 



E1 transitions of higher chamonia 
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Li & Meng & Chao, arXiv: 1201.4155 

                  Γ 𝜓𝑛 → 𝛾𝜒𝑐𝐽
𝑚 =

4

3
𝐶𝑚𝑛𝑒𝑐

2𝛼 𝜒𝑐𝐽
𝑚 𝑟 𝜓𝑛 2

𝐸𝛾
3 

• Three potential models are used and they are consistent 

with each other quite well. (see below for results of SPM) 

• Relativistic corrections are included in the wave functions 

Γ 𝐤𝐞𝐕  𝝍𝟑𝑺 𝟒𝟎𝟒𝟎  𝝍𝟐𝑫 𝟒𝟏𝟔𝟎  𝝍𝟒𝑺 𝟒𝟐𝟔𝟎  

𝝌𝒄𝟐
′ 𝟑𝟗𝟑𝟎  56 9.2 15 

𝝌𝒄𝟏
′ 𝟑𝟖𝟕𝟐  88 189 88 

• Br 𝜓4𝑆 → 𝛾𝑋[𝐽/𝜓𝜋𝜋] ∼ Br 𝜓4𝑆 → 𝛾𝜒𝑐1
′ ⋅ 𝑘 ∼ 1.6 × 10−5 

              
𝐵𝑟 𝑌→𝛾𝑋 𝐽 𝜓𝜋𝜋 

𝐵𝑟 𝑌→𝐽 𝜓𝜋𝜋 
∼ 5.7 × 10−3        see Zhiqing’s talk 

        Γee ⋅ 𝐵𝑟 𝑌 → 𝐽 𝜓𝜋𝜋 ∼ 6 eV   ⇒   Need Γee ∼ 2 keV! 

• Same value is also needed for the molecule model. see Fengkun’s talk 



Γee 4260  
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• 𝜓4𝑆: 970 eV [Li & Chao, PRD’09] 

• Hybrid:  25(20) eV     See Ying’s talk 

• Fitting the line-shape (𝑒+𝑒− → 𝑌 4260 → 𝐽/𝜓𝜋+𝜋−): 

1. Dai & Shi & Tang & Zheng’12:  211 eV (without Γ0)  

2. Cleven et al’13 (see Qian’s talk): several tens eV (private 

communication) 

• Fitting 𝑅-value:  Mo et al’06 

• Γee < 580 eV 

• Ignoring the dip structure 

• Relative phases between 

different resonances are 

important! 



𝑒+𝑒− → 𝜓𝑛 → 𝛾𝑋 3872  

33 

• Amplitude 

𝐴 = 𝐵𝑀1 + 𝐵𝑊2 ∗ 𝑒𝑖𝛿12 + 𝐵𝑊3 ∗ 𝑒𝑖𝛿13  

          𝐵𝑀𝑖 𝑠 =
12𝜋Γ𝑒𝑒

𝑖 ⋅Γ𝛾𝑋
𝑖 𝑆

𝑆−𝑚𝑖
2+𝑖𝑚𝑖⋅Γ𝑡𝑜𝑡

𝑖     Γ𝛾𝑋
𝑖 𝑆 = Γ𝛾𝑋

𝑖 𝑚𝑖0
2 1−

𝑚𝑋
2

𝑆

1−
𝑚𝑋

2

𝑚𝑖0
2

3/2

 

𝜎 𝑒+𝑒− → 𝛾𝑋 3872 [𝐽 𝜓 𝜋𝜋] = 𝑘 ⋅ 𝐴 2 

• Inputs:   

𝑖 𝑚𝑖/MeV Γ𝑡𝑜𝑡
𝑖 /MeV Γ𝑒𝑒

𝑖 /keV 

1 4260 100 0.5 

2 4160 100 0.83 

3 4040 80 0.86 

Li & Meng & Chao, in preparation 



𝑒+𝑒− → 𝜓𝑛 → 𝛾𝑋 3872  
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No inteference 

𝛿12 = 𝛿13 = 0 𝛿12 = − 𝜋 2 , 𝛿13 = 0 

CLEO-c data’13 

Li & Meng & Chao, in preparation 



𝑒+𝑒− → 𝜓𝑛 → 𝑒+𝑒− → 3872  
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 What are indicated? 

• 𝜎 > 0.15 pb @ 4170 MeV 

• 𝜎 𝑒+𝑒− → 𝛾𝑍 3930 ∼ 50 pb @ 4060 MeV 

• Contributions from the 𝐷𝐷∗ component may also be 

important especially at 4260 MeV[see Fengkun’talk] 

Li & Meng & Chao, in preparation 



Summary 
 With 𝑍𝑐𝑐 = 0.3-0.5, X(3872) could be understood in the mixing model: 

• Decay pattern (𝑋 → 𝛾𝜓′need to be confirmed) 

• Closeness to the threshold (S-wave threshold effect). 

• Experimental line-shapes 

• Large production rate 

 B-production 

 Hadro-production 

 E1 production (hadron-loop contributions need to be clarified) 

 More efforts (th. & ex.) are needed to study X and YZ @ BESIII. 

• Resonance parameters and relative phases 

• Line-shapes scanning 

• Continue 𝐷𝐷, 𝐷𝐷𝜋, 𝜋𝑍𝑐 , … …  
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BackUp 
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Specrum: SPM v.s. CCM 

 Two faces of 𝜒𝑐0
′ : [X. Liu et al, PRL’10, EPJC’12; F.K. Guo et al, PRD’12] 

• Narrow peak (Γ ∼ 1 MeV) at 3915 MeV  

• Broad structure (Γ > 100 MeV) around 3850 MeV      
38 

Li & Meng & Chao, PRD_80_014012 (2009)  



Fit to the CMS pT data 

 Molecule production mechanism: 

 𝑂
𝑆3
1
8

𝐷0𝐷 ∗0
Br0 = (6.0 ± 0.6)10−5 GeV3 

            𝜒2/3 = 1.03 

𝑆 = 7 TeV, 𝑦 < 1.2,  10 GeV < 𝑝𝑇 < 30 GeV 
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Predictions v.s. CDF data 

 𝜒𝑐1
′  production mechanism: 

Inputs:          𝑟 = 0.26, 𝑘 = 0.014 

𝜎CDF
th 𝑝𝑝 → 𝑋 𝐽/𝜓𝜋+𝜋− = 2.5 ± 0.7 nb   𝑣. 𝑠.  3.1 ± 0.7 nb ex  

The predicted 𝑝𝑇 distribution of 𝑋 3872  is compared with that of 𝜓′ 
[CDF, PRD’09] (see the diagram) 

 Molecule production mechanism: 

          𝜎CDF
molecule = 1.1 ± 0.4 nb 

2.6 𝜎 deviation from data 

 Both the CMS and the CDF data 
favor the 𝜒𝑐1

′  production 
mechanism, but a little bit 
disfavor the molecule 
production mechanism. 

𝑆 = 1.96 TeV, 𝑦 < 0.6,  𝑝T > 5 GeV 
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Comparison with arXiv: 1303.6524 
 Butenschoen & He & Kniehl, arXiv: 1303.6524v1: 

Set IV: fit two matrix elements to both the CMS and CDF data 

 Input Fit values Predictions 

𝑅2𝑃
′ 0 2/GeV5 𝑟 × 102 𝑘 × 103 𝜎CDF

th /nb 𝜎LHCb
th /nb 

BHK/set IV 0.102 24 ± 4 11 ± 5 2.9 ± 0.5 8.0 ±1.5 

Ours 0.075 26 ± 4 14 ±6 2.5 ± 0.7 9.4 ±2.5 

Only stress that the X(3872) 
could not be a pure 𝜒𝑐1

′  state  
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