X(3872) and Its Production

孟策 北京大学

2nd workshop on the XYZ particles 11月21日,安徽黄山

Outline

- Experimental information on X(3872) before BESIII
- Molecular model: a critical review
 - Production rate
 - Decay pattern
- > X as a mixing state of χ'_{c1} and $D^0 \overline{D}^{*0} + c.c.$
 - Spectrum
 - Scattering amplitudes v.s. line shapes
- Production of X
 - Production in *B* decays
 - Production in $p\bar{p}/pp$ collision
 - Production in e^+e^- annihilation
 - Production in the E1 transitions of higher chamonia
- Summary

Experimental information

1st observed by Belle Collaboration in

 $B \rightarrow J/\psi \pi^+ \pi^- K$ Belle'03

- Mass, width and quantum numbers:
- $m_X = 3871.68 \pm 0.17 \text{ MeV}$ PDG'12 $m_X - m_{D^0D^{*0}} = -0.142 \pm 0.220 \text{ MeV}$ Tomaradze *et al.*'12

PDG'12

- $\Gamma < 1.2 \text{ MeV}$ CL = 90%
- $J^{PC} = 1^{++}$ or 2^{-+}

✓ $J^{PC} = 2^{-+}$ is favored by the $\omega \to \pi^+ \pi^- \pi^0$ mass spectrum in $B \to X(3872)K \to J/\psi\omega(\pi^+\pi^-\pi^0)K$ [BaBar'10], but is excluded by the recent analysis on the angular correlations in $B \to X(3872)K \to J/\psi\rho(\pi^+\pi^-)K$ by LHCb [LHCb'13]

Experimental information

Decay pattern:

• Well-established decay modes:

 $J/\psi\rho(\pi^{+}\pi^{-}), J/\psi\omega(\pi^{+}\pi^{-}\pi^{0}), D^{0}\overline{D}^{*0}/\overline{D}^{0}D^{*0}/D\overline{D}\pi, J/\psi\gamma$ Relative ratios of these 4 modes: 1:1:10:0.3 PDG'12

✓ Large isospin violations

$$R_{\rho/\omega} = Br(X \to J/\psi\rho)/Br(X \to J/\psi\omega) \approx 1$$

$$\checkmark \operatorname{Br}(X \to J/\psi\rho) = \operatorname{Br}(X \to J/\psi\pi^+\pi^-) \equiv \operatorname{Br}_0 < 9\%$$

B-production:

 $1 \times 10^{-4} < Br(B \to X(3872)K) < 3.2 \times 10^{-4} BaBar'05$ Br(B \to X(3872)K)Br₀ = (8.6 ± 0.8) × 10⁻⁶ PDG'12 2.6% < Br₀ < 9%

Experimental informations

- Hadro-production
- Large production rate: $\frac{\sigma(p\bar{p}\to X)\text{Br}_0}{\sigma(p\bar{p}\to\psi')}\frac{\epsilon_{\psi'}}{\epsilon_X} = (4.8 \pm 0.8)\% \text{ CDF'04}$ Similar behaviors to ψ' production in p_T distribution and ... CMS arXiv:1302.3968 D0 PRL'04

a. $p_T > 15 \text{ GeV b. ...}$

Molecule models

[Tornqvist'04, Voloshin'04, Swanson'04, Braaten'04, ...]

- > X(3872) is a loosely bound state of $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$
- The mass, J^{PC} and $R_{\rho/\omega}$ can be understood naturally.
- > The large production rate seems to be questionable
- ✓ Naively, $\sigma(X) \sim k_0^3$, $k_0 = \sqrt{2\mu_{DD^*}|E_b|} < 40 \text{ MeV}$
- ✓ Explicit calculations [Bignamini *et al*, PRL'09]: $\sigma_{CDF}^{th}(X) < 0.085 \text{ nb}$ v.s. $\sigma_{CDF}^{ex}(X)Br_0 = 3.1 \pm 0.7 \text{ nb}$
- ✓ Artoisenet and Braaten [PRD'10] proposed that the rescattering effects of $D^0 \overline{D}^{*0}$ may enhance the rate to values consistent with the CDF data if the upper bound of the relative momentum of $D^0 \overline{D}^{*0}$ in the rescattering is as large as $3m_{\pi} \approx 400$ MeV
- ✓ Similarly, small B-production rate [Braaten, Lu, Kusunoki'05-06] $Br(B^+ \rightarrow K^+X(3872)) = (0.07 - 1) \times 10^{-4}$ for $k_0 \sim 40$ MeV

Molecule models

- Decay pattern
- $DD\pi$ decay mode [Swanson; Voloshin; Fleming, mehen,] $\Gamma(X \to D^0 \overline{D}{}^0 \pi) \sim 2\Gamma(D^{*0} \to D^0 \pi) \sim 100 \text{ keV}$
- Radiative decays: [Swanson'04]

 $\Gamma(X \to J/\psi \rho(\omega)) \sim 1-2 \text{ MeV}$

$\chi'_{c1} - D^0 \overline{D}^{*0}$ mixing model

Meng, Gao and Chao, PRD_87_074025 (2013) [hep-ph/0506222]

- > X(3872) is a mixing state of χ'_{c1} and $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$
- Both the two components are substantial, and they may play different roles in the dynamics of X(3872).
- 1. The short distance (the *b* and *hadro*-) production and the quark annihilation decays of X(3872) proceed dominantly through the χ'_{c1} component.
- 2. The $D^0 \overline{D}^{*0}$ component is mainly in charge of the hadronic decays of X(3872) into $DD\pi/DD\gamma$ as well as $J/\psi\rho$ and $J/\psi\omega$.
- 3. The long distance coupled-channel effects between the two components could renormalize the short distance dynamics by a product factor $Z_{c\bar{c}}$, the equivalent probability of χ'_{c1} in X(3872).

Mixing state: Decay pattern

- $\succ \chi'_{c1}$ induced decay modes
 - Radiative decay modes

1	Barnes & Godfrey'04	Barnes et al'05	Li & Chao'09
$\Gamma_{\psi\gamma} (\text{keV})$	11	59	45
$\Gamma_{\psi'\gamma} \ (\text{keV})$	64	.88	60
$R_{\psi'\gamma/\psi'\gamma}$	5.8	1.5	1.3

• Others

$$\Gamma(\chi'_{c1} \to LHs) \sim \Gamma(\chi_{c1} \to LHs) \sim \mathbf{1} \operatorname{MeV}$$

 $\Gamma(\chi'_{c1} \rightarrow \chi_{c1} \pi^+ \pi^-) \simeq 1.5 \text{ keV}$

Dubynskiy & Voloshin, PRD'08 be relavant to Chengping's talk

 \succ DD^{*} induced decay modes

 $\Gamma(D^0\overline{D}^0\pi) \sim 0.5-1 \text{ MeV}$ $\Gamma(J/\psi\rho(\omega)) \sim 50-100 \text{ keV}$ Meng & Chao'07

Which could not be separated from the LD evolution amplitude, but can be incorporated in fitting the experimental line shapes.

Specrum: Charmonium

Quark-level picture

Quark-pairs creation \Rightarrow Screening the linear potential

⇒ Screened (unquenched) potential model [Chao & Ding & Qin'92]

> Hadron-level picture

Coupled-Channel models \Rightarrow mixing between $H_{c\bar{c}}$ and $D\bar{D}$

Which have been considered even in the Cornell model [E. Eichten et al'78].

Specrum: Screened potential model

Li & Chao, PRD_79_094004 (2009)

÷.	State	Expt.	Theor.	of ours	Theor. of $Ref.[5]$		
			Mass	$\langle r^2 angle^{rac{1}{2}}$	NR	GI	
1S	$J/\psi(1^3{ m S}_1)$	3096.916 ± 0.011	3097	0.41	3090	3098	
	$\eta_{ m c}(1^1{ m S}_0)$	2980.3 ± 1.2	2979		2982	2975	
2S	$\psi'(2^3\mathrm{S}_1)$	3686.093 ± 0.034	3673	0.91	3672	3676	
	$\eta_c'(2^1{ m S}_0)$	3637 ± 4	3623		3630	3623	
3S	$\psi(3^3{ m S}_1)$	4039 ± 1	4022	1.38	4072	4100	
	$\eta_{ m c}(3^1{ m S}_0)$		3991		4043	4064	
4S	$\psi(4^3{ m S}_1)$	4263^{+8}_{-9}	4273	> 1.87	4406	4450	
	$\eta_{ m c}(4^1{ m S}_0)$		4250		4384	4425	
5S	$\psi(5^3{ m S}_1)$	4421 ± 4	4463	2.39			
	$\eta_{ m c}(5^1{ m S}_0)$		4446				
6S	$\psi(6^3 S_1)$		4608	2.98			
	$\eta_{ m c}(6^1{ m S}_0)$		4595				
1P	$\chi_2(1^3\mathrm{P}_2)$	3556.20 ± 0.09	3554	0.71	3556	3550	
	$\chi_1(1^3\mathrm{P}_1)$	3510.66 ± 0.07	3510		3505	3510	
	$\chi_0(1^3\mathrm{P}_0)$	3414.75 ± 0.31	3433		3424	3445	
	$h_c(1^1\mathrm{P}_1)$	3525.93 ± 0.27	3519		3516	3517	
$2\mathbf{P}$	$\chi_2(2^3\mathrm{P}_2)$ ($3929 \pm 5 \pm 2$	3937	1.19 <	3972	3979	
	$\chi_1(2^3\mathrm{P}_1)$		3901)	3925	3953	
	$\chi_0(2^3\mathrm{P}_0)$		3842		3852	3916	
	$h_c(2^1\mathrm{P}_1)$		3908		3934	3956	

Specrum: SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

- > SPM \approx CCM in the global features.
- CCM is more adept in investigating the open-charmed threshold effects.

Specrum: S-wave threshold v.s. X(3872) Li & Meng & Chao, PRD 80 014012 (2009) $M - M_0 + \Pi(M) = 0 \qquad \Pi = \sum_{BC} \int d^3 p \frac{|\langle BC, \vec{p} | H_{QPC} | \psi_0 \rangle|^2}{E_{BC}(\vec{p}) - M - i\epsilon}$ $|\langle BC, \vec{p} | H_{OPC} | \psi_0 \rangle|^2 \sim \Gamma(\psi \to BC)$ B ψ_0 ψ_0 $\Pi(M)$ $\sim (M - M_R - M_C)^{\frac{2L+1}{2}}$ $E = \stackrel{C}{M} - M_B - M_C \Rightarrow 0$ S-wave threshold effect: L = 0MeV $\Pi(E) \sim \sqrt{E}, \ \mathrm{d}\Pi(E)/\mathrm{d}E \sim 1/\sqrt{E}$ $-\operatorname{Re}\Pi_{\chi'_{c1}}(M)$ -140 -160 Aass shift \Rightarrow S-wave cusp -180 -200 \Rightarrow "attracting" the mass of the bare -220 -240 state to the threshold $M - M_0(\chi'_{c1})$ -260 -280 • $M_{\chi'_{c1}} \sim th_{DD^*}$: -300 -320 $\Delta M \sim 15 \text{ MeV} \Leftrightarrow \Delta \text{Re}\Pi \sim 70 \text{ MeV}$ 3840 3870 3810 3900 3930 3960 3990 4020 Physics mass $\Leftrightarrow \Delta M_0 \sim 85 \text{ MeV}$

X(3872) in the CCM: Pole Trajectory

Near-threshold expansion

 $\Pi(E) \approx \Pi(0) + igk(E)/2, \ k(E) = \sqrt{2\mu E + i0^{+}}$ Solving $E - E_0 + \Pi(0) + igk(E)/2 = 0$

X(3872) in the CCM: Pole Trajectory

Size of χ'_{c1} in the X(3872)

For the bound state [Weinberg'65, Baru et al'04]

$$Z = \frac{\partial \Pi(E)}{\partial E}\Big|_{E=-\epsilon} \approx \frac{1}{1 + \frac{g}{2\sqrt{2}}\sqrt{\mu/\epsilon}} \xrightarrow{\epsilon \to 0} 0!$$

 $g_R = Z \cdot g = 2\sqrt{2}\sqrt{\epsilon/\mu} (1-z)$ see Fengkun's and Qian's talks

spectrum density: $w(E) = \frac{gk/2\pi}{|E-E_0+\Pi(E)|^2}$

spectrum sum rule: $Z + \int_0^\infty w(E) dE = 1$ [Baru et al'10]

Inelastic decay modes:

Generalized spectrum density:

$$w(E) = \frac{(gk + \Gamma_0)/2\pi}{|E - E_0 + \Pi(E) + i\Gamma_0/2|^2}, \quad Z = \int_{-\Delta E}^{+\Delta E} w(E) dE$$

 Γ_0 may make the X spending more time in the short distant $\bar{c}c$ configuration [Li & Meng & Chao, in progress]

Scattering amplitude

Coupled-channel amplitude

 $F(E) = \frac{g/2}{E - E_0 + \Pi(0) + igk(E)/2 + i\Gamma(E)/2 + i\Gamma_0/2}$

Fitting the experimental line-shapes:

- Vitual state poles are favored [Hanhart et al'07]
- With nonzero Γ_0 , two near threshold poles are favored [Zhang & Meng & Zheng'09]
- With $\Gamma_0 = 1 \sim 2 \text{ MeV} [Kalashnikova & Nefediev'09]$

$$Z = \int_{-10 \text{ MeV}}^{+10 \text{ MeV}} w(E) dE = 0.3 \sim 0.5$$

Scattering amplitude v.s. line shape

Meng & Sanz-Cillero & Shi & Yao & Zheng, in preparation

	(d)	(e)	
	Fit I	Fit II	Fit III
Amplitudes	C.C. + B.C.	Coupled-channel	Bubble chain
$\chi^2/d.o.f.$	44.1/42	49.7/43	83.3/46

Production of X(3872)

General factorization formula

• Energy scales:

 $p_T, m_b, m_c \gg m_c v, m_c v^2, \Lambda_{QCD} \gg \epsilon, \Gamma_X \sim 1 \text{ MeV}$ $c\bar{c} \text{ production } \chi'_{c1} \text{ production } \text{Binding & Decay}(LD)$

• Factorization I:

$$\sigma(X(J/\psi\pi^+\pi^-)) = \sigma(\chi'_{c1}) \cdot k, \qquad k = Z_{c\bar{c}} Br_0$$

• Factorization II: NRQCD Bodwin & Braaten & Lepage'95

$$d\sigma(\chi_{c1}') = \sum_{n} d\hat{\sigma}((c\bar{c})_{n}) \frac{\left\langle O_{n}^{\chi_{c1}'} \right\rangle}{m_{c}^{2L_{n}}}$$

 $n = {}^{3}P_{1}^{[1]} \& {}^{3}S_{1}^{[8]}$ at leading order in v for χ'_{c1} production

Production in B decays

- Theory: [Meng, Gao and Chao, PRD_87_074025 (2013) [hep-ph/0506222]] Input: $|R'_{2P}(0)|^2 = |R'_{1P}(0)|^2 = 0.075 \text{ GeV}^5$ $Br(B \rightarrow \chi'_{c1}K)/Br(B \rightarrow \chi_{c1}K) = 0.75 \sim 1$ $Br(B \rightarrow \chi'_{c1}K) = (2 \sim 4) \times 10^{-4}$
- Fits: [Kalashnikova & Nefediev PRD'09] Br^{fit} $(B \rightarrow \chi'_{c1}K) = (3.7-5.7) \times 10^{-4}$
- Experimental data:

Br(B → X(J/ $\psi \pi^+ \pi^-$)K) = Br(B → χ'_{c1} K) · k = (8.6 ± 0.8) × 10⁻⁶ PDG'12 ∴ k = Z_{cc}Br₀ = 0.018 ± 0.004

✓ With a modest value $Br_0 = 5\% \in (2.6\% - 9\%)$

 $Z_{c\bar{c}} = 28\% - 44$ ($Z^{\text{fit}} = 0.3 \sim 0.5$ Kalashnikova'09)

Production in B decays

• Comparing with exparamental data: Input:Br $(B \rightarrow \chi'_{c1}K) = Br_{PDG}(B \rightarrow \chi_{c1}K), \ k = 0.18$

$Br_{i} \cdot Br_{0} \cdot 10^{6}$ $i =$	Predictions	data		
$B^+ \to XK^+$	8.6 ± 0.4	8.6 ± 0.8 PDG'12		
$B^0 \to X K^0$	7.1 ± 0.5	4.4 ± 1.3 PDG'12		
$B^+ \to XK^{*+}$	5.4 ± 1.0			
$B^0 \rightarrow X K^+ \pi^-$	6.8 ± 0.7	8.5 ± 1.3 Chenping's talk		
$B^0 \to XK^{*0}$	4.0 ± 0.7	3.7 \pm 1.0 Chenping's talk Br($K^{*0} \rightarrow K^{+}\pi^{-}$) = 2/3		

Production at hadron collider

• NRQCD Factorization: [Bodwin & Braaten & Lepage'95]

$$d\sigma(pp \to \chi'_{c1}) = \sum_{n} d\widehat{\sigma} \left((c\overline{c})_{n} \right) \frac{\left\langle o_{n}^{\chi'_{c1}} \right\rangle}{m_{c}^{2L_{n}}}$$
$$= \sum_{i,j,n} \int dx_{1} dx_{2} G_{i/p} G_{j/p} d\widehat{\sigma} (ij \to (c\overline{c})_{n}) \left\langle O_{n}^{\chi'_{c1}} \right\rangle$$
$$n = {}^{3}P_{1}^{[1]} \& {}^{3}S_{1}^{[8]} \text{ at leading order in } v \text{ for } \chi'_{c1} \text{ production}$$
$$\blacktriangleright \text{ Molecule model : Artoisenet \& Braaten, PRD'09}$$
$$d\sigma(pp \to X_{D^{0}\overline{D}^{*0}}) = d\widehat{\sigma} \left(c\overline{c} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} \right) \left\langle O_{{}^{3}S_{1}^{[8]}}^{D^{0}\overline{D}^{*0}} \right\rangle$$

- ✓ Different long distant matrix elements
- ✓ Different combination of the $c\bar{c}$ channels
- ✓ One can compare the two models with the help of the CMS data on the pT distribution!

Production at hadron collider

Meng & Han & Chao, arXiv:1304.6710

NLO calculations:

• Inputs: Ma & Wang & Chao'11 (MWC'11)

$$\mu_r = \mu_f = m_T = \sqrt{p_T^2 + 4m_c^2}, \qquad \mu_{NR} = m_c = 1.5 \pm 0.1 \text{ GeV}$$
$$|R'_{2P}(0)|^2 = |R'_{1P}(0)|^2 = 0.075 \text{ GeV}^5$$

• To compare our following results with the available ones for χ_{c1} production [MWC'11], we parameterize the matrix elements as

$$r = m_c^2 \left(O_{3S_1^{[8]}}^{\chi'_{c1}} \right) / \left(O_{3P_1^{[1]}}^{\chi'_{c1}} \right) \quad (r_{1P} = 0.27 \pm 0.06, \text{MWC'11})$$

• The cross section in the χ'_{c1} production mechanism is a simple function of r, k and p_T

Fit to the CMS p_T distribution

Meng & Han & Chao, arXiv:1304.6710

 $\succ \chi'_{c1}$ production mechanism:

 $r = 0.26 \pm 0.07,$ $k = 0.014 \pm 0.006$

- The central values correspond $\chi^2/2 = 0.26$
- The value of r_{2P} for χ'_{c1} is almost the same as that for $\chi_{c1}(1P)$:

 $r_{1P} = 0.27 \pm 0.06$ [MWC'11] which strongly suggests that X(3872) be produced through its χ'_{c1} component at short distance

Molecule production mechanism:

$$\left\langle O_{{}^{3}S_{1}^{[8]}}^{D^{0}\overline{D}^{*0}} \right\rangle \operatorname{Br}_{0} = (6.0 \pm 0.6) 10^{-5} \, \mathrm{GeV^{3}}$$

 $\chi^{2}/3 = 1.03$

Predictions v.s. CDF/LHCb data

Meng & Han & Chao, arXiv:1304.6710

Inputs:	$r = 0.26, \ k = 0.014;$	$\left\langle O_{3S_{1}^{[8]}}^{D^{0}\bar{D}^{*0}} \right\rangle$	$Br_0 = 6.0 \times 10^{-5} \text{ GeV}^3$
---------	--------------------------	---	---

	Data	χ_{c1}' mechanism	molecule
$\sigma_{ m CMS}/{ m nb}$	1.06 ± 0.19	$1.09\substack{+0.08\\-0.12}$	0.89 ± 0.09
$\sigma_{ m CDF}/ m nb$	3.1 ± 0.7	2.5 ± 0.7	1.1 ± 0.4
$\sigma_{ m LHCb}/ m nb$	$(5.4 \pm 1.4) \cdot 0.8$	9.4 ± 2.2	4.0 ± 1.3

> CMS + CDF data favor the χ'_{c1} production mechanism

- Same forward rapidity region
- Almost same gluon energy: $\sqrt{s} = \sqrt{x_1 x_2 S} \sim 2P_T$

Test the universality and the evolution of the gluon PDF

CMS + LHCb data favor the molecule production mechanism

 less meaningful since the predicted pT distribution at CMS is almost inconsistent with the data.

Single parameter fit

\succ Fitting k to the CMS		r i	5a 3b		
data with fixed r	r	k	$\chi^2/3$	$\sigma_{\rm CDF}^{\rm th}({\rm nb})$	$\sigma_{\rm LHCb}^{\rm th}({\rm nb})$
	0.20	0.021	0.39	3.26	12.2
$(3.1 \pm 0.7 \text{ nb})_{CDF}^{CDF}$	0.25	0.015	0.17	2.63	9.87
$(5.4 \pm 1.4 \text{ nb})_{LHCb}^{ex} \cdot 80\%$	0.30	0.012	0.20	2.28	8.56
\succ Fitting k to	0.35	0.010	0.27	2.06	7.72
B decay data	0.40	0.008	0.34	1.90	7.14

Kalashnikova & Nefediev PRD'09

 $\therefore k = Z_{c\bar{c}} Br_0 = 0.018 \pm 0.004$

- ✓ Window in the table: r = 0.20-0.26
- The consistency of the CDF data with our prediction is better, but that for the LHCb data is worse.
- Similar results were obtained in [Butenschoen & He & Kniehl, arXiv: 1303.6524v2]

Production in e^+e^- annihilation

$$\succ e^+e^- \rightarrow \gamma X \left(X = \eta_c, \chi_{cJ} \dots \right)$$

• NLO at $\sqrt{S} = 10.6$ GeV: Li & He & Chao'09 $\sigma(e^+e^- \rightarrow \gamma \chi'_{c1}) = 18 \text{ fb}$ Search X(3872) at Belle (711 fb⁻¹ data sample) $N(\gamma X \rightarrow \gamma \mu^+ \mu^- \pi^+ \pi^-) \sim 10$

- NLO at $\sqrt{S} = 4 5$ GeV: $\sigma \sim 1/S^2$
- 🖎 Chao & He & Li & Meng, arXiv: 1310.8597
 - $m_c = 1.5 \text{ GeV}$

🗻 Li & Xu & Liu & Zhang, arXiv: 1310.0374 (see Guangzhi's talk)

- $m_c = M_X/2$
- Relativistic corrections are included

Production in e^+e^- annihilation

 e^+

LO (pure QED process)

$$\sigma(\chi_c) \sim \frac{1}{1-r}, r = (2m_c)^2/S$$

⇒ near-threshold singularity

QCD pollution in the near-threshold region
 The Coulombic gluons need to be resummed
 ⇒ E1 transitions of resonances

 $\Rightarrow \sigma(m_c = 1.5 \text{GeV})$ might be viewed as the lower limit of the continuum contribution (without resonance contribution)

Production in e^+e^- annihilation

Chao & He & Li & Meng	arXiv:	1310.8	3597	$\sigma/{ m pb}$			
\sqrt{s}/GeV	η_c	η_c^{\prime}	χ_{c0}	χ_{c1}	$\chi_{c1}^{'}$	χ_{c2}	χ_{c2}^{\prime}
4.040	0.91	0.04	0.001	0.70	0.32	0.48	0.16
4.160	0.86	0.06	-0.005	0.64	0.40	0.41	0.23
4.260	0.81	0.08	-0.007	0.58 🤇	0.43	0.36	0.24
4.360	0.78	0.09	-0.008	0.53	0.43	0.31	0.23
4.415	0.76	0.10	-0.008	0.50	0.43	0.28	0.23
4.660	0.67	0.13	-0.006	0.40	0.39	0.20	0.19
5.000	0.55	0.14	-0.002	0.25	0.26	0.13	0.14

 $\sigma(\gamma X[J/\psi \pi^+\pi^-]) = \sigma(\gamma \chi'_{c1}) \cdot k \sim 0.01 \text{ pb} \ll \sigma^{ex} \sim 0.3 \text{ pb}$ Resonance contributions should be dominant!

E1 transitions of higher chamonia

Li & Meng & Chao, arXiv: 1201.4155 $\Gamma(\psi^n \to \gamma \chi^m_{cJ}) = \frac{4}{3} C_{mn} e_c^2 \alpha |\langle \chi^m_{cJ} | r | \psi^n \rangle|^2 E_{\gamma}^3$

- Three potential models are used and they are consistent with each other quite well. (see below for results of SPM)
- Relativistic corrections are included in the wave functions

Γ(keV)	$\psi_{3S}(4040)$	$\psi_{2D}(4160)$	$\psi_{4S}(4260)$
$\chi_{c2}'(3930)$	56	9.2	15
$\chi_{c1}'(3872)$	88	189	88

• $\operatorname{Br}(\psi_{4S} \to \gamma X[J/\psi \pi \pi]) \sim \operatorname{Br}(\psi_{4S} \to \gamma \chi_{c1}') \cdot k \sim 1.6 \times 10^{-5}$

$$\frac{Br(Y \to \gamma X[J/\psi \pi \pi])}{Br(Y \to J/\psi \pi \pi)} \sim 5.7 \times 10^{-3} \quad \text{see Zhiqing's talk}$$

$$\Gamma_{\text{ee}} \cdot Br(Y \to J/\psi \pi \pi) \sim 6 \text{ eV} \quad \Rightarrow \quad \text{Need} \quad \Gamma_{\text{ee}} \sim 2 \text{ keV!}$$

• Same value is also needed for the molecule model. see Fengkun's talk

$\Gamma_{ee}(4260)$

- ψ_{4S} : 970 eV [Li & Chao, PRD'09]
- Hybrid: 25(20) eV See Ying's talk
- Fitting the line-shape $(e^+e^- \rightarrow Y(4260) \rightarrow J/\psi \pi^+\pi^-)$:
 - 1. Dai & Shi & Tang & Zheng'12: 211 eV (without Γ_0)
 - 2. Cleven et al'13 (see Qian's talk): several tens eV (private communication)
- Fitting *R*-value: Mo et al'06
 - $\Gamma_{ee} < 580 \text{ eV}$
 - Ignoring the dip structure
 - Relative phases between different resonances are important!

$$e^+e^- \rightarrow \psi^n \rightarrow \gamma X(3872)$$

Li & Meng & Chao, in preparation

• Amplitude

$$A = BM_1 + BW_2 * e^{i\delta_{12}} + BW_3 * e^{i\delta_{13}}$$

$$BM_{i}(s) = \frac{\sqrt{12\pi\Gamma_{ee}^{i}\cdot\Gamma_{\gamma X}^{i}(S)}}{S-m_{i}^{2}+im_{i}\cdot\Gamma_{tot}^{i}} \quad \Gamma_{\gamma X}^{i}(S) = \Gamma_{\gamma X}^{i}(m_{i0}^{2})\left(\frac{1-\frac{m_{X}^{2}}{S}}{1-\frac{m_{X}^{2}}{m_{i0}^{2}}}\right)^{3/2}$$
$$\sigma(e^{+}e^{-} \to \gamma X(3872)[J/\psi \pi\pi]) = k \cdot |A|^{2}$$

• Inputs:

i	m _i /MeV	Γ_{tot}^i /MeV	Γ^i_{ee} /keV
1	4260	100	0.5
2	4160	100	0.83
3	4040	80	0.86

 $e^+e^- \rightarrow \psi^n \rightarrow e^+e^- \rightarrow (3872)$

Li & Meng & Chao, in preparation

- What are indicated?
 - $\sigma > 0.15 \text{ pb} @ 4170 \text{ MeV}$
 - $\sigma(e^+e^- \to \gamma Z(3930)) \sim 50 \text{ pb} @ 4060 \text{ MeV}$
 - Contributions from the DD* component may also be important especially at 4260 MeV[see Fengkun'talk]

Summary

- > With $Z_{c\bar{c}} = 0.3-0.5$, X(3872) could be understood in the mixing model:
- Decay pattern ($X \rightarrow \gamma \psi'$ need to be confirmed)
- Closeness to the threshold (S-wave threshold effect).
- Experimental line-shapes
- Large production rate
 - ✓ B-production
 - ✓ Hadro-production
 - ✓ E1 production (hadron-loop contributions need to be clarified)
- ➢ More efforts (th. & ex.) are needed to study X and YZ @ BESIII.
- Resonance parameters and relative phases
- Line-shapes scanning
- Continue DD, $DD\pi$, πZ_c ,

BackUp

Specrum: SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

	Our results					R	esults of Re	f. [6]
states	M_{que}	Mcou	M _{scr}	ΔM_{cou}	ΔM_{scr}	M_0'	M'_{cou}	$\Delta M'_{cou}$
$1^{1}S_{0}$	2980	2980	2980.0	0	0	2982	2982	0
$1^{3}S_{1}$	3112	3100	3105	-12	-7	3090	3090	0
$1^{1}P_{1}$	3583	3531	3539	-52	-44	3516	3514	-2
$1^{3}P_{0}$	3476	3441	3448	-35	-28	3424	3415	-9
$1^{3}P_{1}$	3568	3520	3526	-48	-42	3505	3489	-16
$1^{3}P_{2}$	3628	3565	3577	-63	-51	3556	3550	-6
$2^{1}S_{0}$	3697	3635	3626	-62	-71	3630	3620	-10
$2^{3}S_{1}$	3754	3674	3674	-80	-80	3672	3663	-9
$1^{1}D_{2}$	3895	3818	3805	-77	-90	3799		
$1^{3}D_{1}$	3878	3794	3790	-84	-88	3785	3745	-40
$1^{3}D_{2}$	3896	3818	3805	-78	-91	3800		
$1^{3}D_{3}$	3903	3823	3812	-80	-91	3806		
$2^{1}P_{1}$	4042	3961	3909	-81	-133	3934	3929	-5
$2^{3}P_{0}$	3948	3915	3839	-33	-109	3852	3782	-70
$2^{3}P_{1}$	4030	3875	3900	-155	-130	3925	3859	-66
$2^{3}P_{2}$	4085	3966	3941	-119	-144	3972	3917	-55

Fixed Formula Two faces of χ'_{c0} : [X. Liu et al, PRL'10, EPJC'12; F.K. Guo et al, PRD'12]

- Narrow peak ($\Gamma \sim 1$ MeV) at 3915 MeV
- Broad structure ($\Gamma > 100$ MeV) around 3850 MeV

Predictions v.s. CDF data

 $\sqrt{S} = 1.96 \text{ TeV}, \qquad |y| < 0.6, \qquad p_{\mathrm{T}} > 5 \text{ GeV}$

 $\succ \chi'_{c1}$ production mechanism:

Inputs: r = 0.26, k = 0.014 $\sigma_{CDF}^{th}(p\bar{p} \rightarrow X(J/\psi\pi^{+}\pi^{-})) = 2.5 \pm 0.7 \text{ nb} (v.s. (3.1 \pm 0.7 \text{ nb})_{ex})$ The predicted p_T distribution of X(3872) is compared with that of ψ' [CDF, PRD'09] (see the diagram)

➢ Molecule production mechanism: $\sigma_{CDF}^{molecule} = 1.1 \pm 0.4 \text{ nb}$ 2.6 σ deviation from data

Both the CMS and the CDF data favor the χ'_{c1} production mechanism, but a little bit disfavor the molecule production mechanism.

Comparison with arXiv: 1303.6524

Butenschoen & He & Kniehl, arXiv: 1303.6524v1:

Set IV: fit two matrix elements to both the CMS and CDF data

