Production of $C=+X Y Z$ recoiled with γ in $e^{+} e^{-}$experiments

Guang-zhi Xu

Beihang University, Beijing 100191, China
Email: still200@gmail.com

November 19-22, 2013 @ Huangshan 2nd workshop on the XYZ particles

Outline

Based on: ArXiv: 1310.0374, by Y.J.Li, G.z.Xu, k.Y.Liu and Y.J.Zhang

- Introduction
- The frame of calculation
- The results for pure charmonium
- The results for $C=+X Y Z$ states
- $X(3872)$
- $X(3940)$ and $X(4160)$
- $X(4350)$
- Summary and discussion

Introduction-X(3872)

- Discovered by the Belle collaboration(2003). PrL91,262001
- Confirmed by the CDF 2003, D0 2004, BaBar 2004, LHCb 2011, and CMS 2013 collaborations.
- Mass: Close to the $D^{0} \bar{D}^{\star 0}$ threshold within 1 MeV , $J^{P C}: 1^{++}$or 2^{-+}(Excluded by LHCb EPJ C72,1972,2012)
- Theoretical hypothesis: standard charmonium, $D^{0} D^{\star 0}$ molecule, tetraquark, quark-gluon mixture state, threshold effect...

QWG,2011; N.Drenska, 2010; S.Godfrey, 2008; M.Nielsen, 2010; Eric.S.Swanson, 2006; C.Hambrock, 2013;

$X(3872) \Leftrightarrow \chi_{c 1}(2 P) ?$

- Potential model:

Mass $\left[\chi_{c 1}(2 P)\right] \approx 3950 \mathrm{MeV}$, lager than $X(3872)$ about 75 MeV . If $\mathrm{Z}(3930)=\chi_{c 2}(2 P), \quad \operatorname{Mass}\left[2^{3} P_{2}-X(3872)\right]=58 \mathrm{MeV}>50 \mathrm{MeV}$. (Screening effects: draw down the mass to 3900 MeV PRD79,094004.)

- If Mass $\left[\chi_{c 1}(2 P)\right]=3872 \mathrm{MeV}$, Width $=1.7 \mathrm{MeV}$.
$B\left[2^{3} P_{1} \rightarrow \gamma \psi(2 S)\right] / B\left[2^{3} P_{1} \rightarrow \gamma J / \psi\right] \approx 6$.
CONSISTENT with $X(3872)$
- D0:no significant differences between the $X(3872)$ and $\psi(2 S)$
- Failed to explain the Isospin-violating in the $J / \psi \rho^{0}, J / \psi \omega$ decay patterns.

State		Expt.	Theor.
1 P	$\chi_{2}\left(1^{3} \mathrm{P}_{2}\right)$	3556.20 ± 0.09	3554
	$\chi_{1}\left(1^{3} \mathrm{P}_{1}\right)$	3510.66 ± 0.07	3510
	$\chi_{0}\left(1^{3} \mathrm{P}_{0}\right)$	3414.75 ± 0.31	3433
	$h_{c}\left(1^{1} \mathrm{P}_{1}\right)$	3525.93 ± 0.27	3519
2P	$\chi_{2}\left(2^{3} \mathrm{P}_{2}\right)$	$3929 \pm 5 \pm 2$	3937
	$\chi_{1}\left(2^{3} \mathrm{P}_{1}\right)$		3901
	$\chi_{0}\left(2^{3} \mathrm{P}_{0}\right)$		3842
	$h_{c}\left(2^{1} \mathrm{P}_{1}\right)$		3908

$\mathrm{X}(3872) \Leftrightarrow D^{0} \bar{D}^{\star 0}$ Molecule?

- In 1977, Rugula,Georgi,Glashow and Voloshin,Okun presented molecule conjecture. In 1994, Turnqvist predicted the mass of the ground $D \bar{D}$ molecule state was about 3870 MeV .
- Mass and quantum number can be explained naturally.
- Can explain the Isospin-violation in the $J / \psi \rho^{0}, J / \psi \omega$ decay mode e.S.Swanson,PLB598,197,2004 .
- Prediction on charged molecule states $\left(D^{+} D^{* 0}, D^{0} D^{*-}\right)$, but no explicit signals in the experimental measurements.
- Puzzle of the production at the hadron colliders: Tevatron and LHC.

$X(3872) \Leftrightarrow$ Mixture with $\chi_{c 1}(2 P)$ and Molecule?

Others in support of that $X(3872)$ has a $c \bar{c}$ component,

- QCDSR supports $c \bar{c}(97 \%)$ mixed with molecule or tetraquark state.
- Screening potential model (calculation on the width) supports the idea of mixture with a primary $c \bar{c}$ component.
$\mathrm{X}(3872)$ as mixture with $\chi_{c 1}(2 P)$ and $D \bar{D}^{\star 0}$ molecule components, (Meng's talk, c.Meng,hep-ph/0506222)
- $Z_{c \bar{c}}$ as the possibility of the $\chi_{c 1}(2 P)$ component in $X(3872)$. Universal, obtained by fitting to the experimental data.
- Molecule component dominates the decay patterns.
- In the \mathbf{B} and hadron production process, $\chi_{c 1}(2 P)$ dominates. (Predictions of prompt X(3872) hadron-production at NLO in α_{s} are consistent with the CMS and the CDF data c.Meng.hep-ph/1304.6710 and disfavor the pure $\chi_{c 1}(2 P)$ view m.Butenschoen,hep-ph/ 1303.6524) Note: LHCb data will also be compatible when taking the relativistic correction contribution into account.

Introduction- Other $C=+X Y Z$ states

	State, $m(\Gamma)$ in $\mathrm{MeV}, J^{P C}$		Prod.(Decay)	Ref
X (3872)	$3871.68 \pm 0.17(<1.2)$	1^{++}	$B \rightarrow K(\pi \pi J / \psi)$	PRL91,262001
			$B \rightarrow K(\omega J / \psi)$	(hep-ex/0505037; PRD82,011101)
			$B \rightarrow K\left(D^{0} \bar{D}^{*}\right)$	PRL97,162002; PRD77,011102
			$B \rightarrow K(\gamma J / \psi)$	PRD74,071101
			$p \bar{p} \rightarrow(\pi \pi J / \psi)+$	PRL93,072001; PRL98,132002
			$p p \rightarrow(\pi \pi J / \psi)+$	JHEP04(2013)154, 1302.6269
$X(3915)$	$3917.5 \pm 2.7(27 \pm 10)$	0^{++}	$B \rightarrow K(\omega J / \psi)$	PRL94.182002; PRL101,082001
			$e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi)$	PRD82,011101; PRD86,072002
$X(3940)$	$3942_{-8}^{+9}\left(37_{-17}^{+27}\right)$	J^{P+}	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$	PRL100,202001
$Y(4140)$	$4143.0 \pm 3.1\left(12_{-6}^{+9}\right)$	J^{P+}	$B \rightarrow K(\phi J / \psi)$	arXiv1101.6058
$X(4160)$	$4156_{-25}^{+29}\left(139_{-60}^{+110}\right)$	J^{P+}	$e^{+} e^{-} \rightarrow J / \psi\left(D^{*} \bar{D}^{*}\right)$	PRL100,202001
$Y(4274)$	$4274.4_{-6.7}^{+8.4}\left(32_{-15}^{+22}\right)$	J^{P+}	$B \rightarrow K(\phi J / \psi)$	arXiv1101.6058
$X(4350)$	$4350.6_{-5.1}^{+4.6}\left(13.3_{-10}^{+18}\right)$	$0 / 2^{++}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	PRL104,112004

$\mathrm{C}=+\mathrm{XYZ}$ states through recoiled γ process at B factories

- Motivated by two poionts:
1)large cross sections for the double charmonium production recoiled by J / ψ
2)quantum number of photon is same as J / ψ
- Identifying the $\mathrm{C}=+$ charmonium states H in the $e^{+} e^{-} \rightarrow \gamma^{\star} \rightarrow H+\gamma$ at B factories was proposed in the Ref.(D.Li, PRD80,114014,2009 and W.L.Sang, PRD81,034028, 2010).
- The radiative corrections of $e^{+} e^{-} \rightarrow \gamma^{\star} \rightarrow H+\gamma$ at B factories were calculated.
- The relativistic correction of $e^{+} e^{-} \rightarrow \gamma^{\star} \rightarrow \eta_{c}+\gamma$ was also included in the Sang's paper.

$e^{+} e^{-} \rightarrow X(3872)+\gamma$ at BESIII

- Recently, BesIII reports the cross sections of
$e^{+} e^{-} \rightarrow \gamma X(3872) \quad$ (arxiv/1310.0280,ariviv/1310.4101)
$\sigma \times \operatorname{Br}[J / \psi \pi \pi]<0.13 \mathrm{pb}$ at $90 \% \mathrm{CL}$.
$\sqrt{s}=4.009 \mathrm{GeV}$
$\sigma \times \operatorname{Br}[J / \psi \pi \pi]=0.32 \pm 0.15 \pm 0.02 \mathrm{pb}$
$\sqrt{s}=4.230 \mathrm{GeV}$
$\sigma \times \operatorname{Br}[J / \psi \pi \pi]=0.35 \pm 0.12 \pm 0.02 \mathrm{pb}$
$\sigma \times \operatorname{Br}[J / \psi \pi \pi]<0.39 \mathrm{pb}$ at $90 \% \mathrm{CL}$.
$\sqrt{s}=4.260 \mathrm{GeV}$
$\sqrt{s}=4.360 \mathrm{GeV}$

Where $\operatorname{Br}[J / \psi \pi \pi]$ means $\operatorname{Br}[X(3872) \rightarrow J / \psi \pi \pi]$.

- The studies of $\psi(4160) \rightarrow X(3872) \gamma($ arxiv $/ 1304.8101)$ and $\psi(4260) \rightarrow X(3872) \gamma$ (F.K.Guo's talk, arxiv/1306.3096) are proposed to probe the molecular content of the $X(3872)$.

The frame of Calculation

- Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.
- In the Nonrelativistic QCD (NRQCD) approach, the production of heavy quarkonium is factored to short distance coefficients and long distance matrix elements(LDMEs).
- The short distance coefficients can be calculated perturbatively with the expansions by α_{s}.
- The LDMES can be scaled by the relative velocity v between the quark and antiquark. v^{2} is about 0.3 for charmonium and about 0.1 for bottomonium.
-

$$
\begin{align*}
& R=\sum_{n} F_{n}<\mathcal{O}(n)> \\
& F_{n}=F_{n}^{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots .\right) \\
&<\mathcal{O}(n)>v^{d_{n}} \tag{1}
\end{align*}
$$

The amplitudes

In the NRQCD factorization framework, the amplitude in the rest frame of H as (PRD78,074022; PRD80,114014; PRD81,034028)

$$
\begin{aligned}
& \mathcal{M}\left(e^{-}\left(k_{1}\right) e^{+}\left(k_{2}\right) \rightarrow H_{c \bar{c}}\left({ }^{2 S+1} L_{J}\right)\left(2 p_{1}\right)+\gamma\right) \\
= & \sum_{L_{z} S_{z}} \sum_{s_{1} s_{2}} \sum_{j k} \int \mathrm{~d}^{3} \vec{q} \Phi_{c \bar{c}}(\vec{q})\left\langle s_{1} ; s_{2} \mid S S_{z}\right\rangle\langle 3 j ; \overline{3} k \mid 1\rangle \\
& \times \mathcal{M}\left[e^{-}\left(k_{1}\right) e^{+}\left(k_{2}\right) \rightarrow c_{j}^{s_{1}}\left(p_{1}+q\right)+\bar{c}_{k}^{s_{2}}\left(p_{1}-q\right)+\gamma(k)(2)\right.
\end{aligned}
$$

where $\langle 3 j ; \overline{3} k \mid 1\rangle=\delta_{j k} / \sqrt{N_{c}},\left\langle s_{1} ; s_{2} \mid S S_{z}\right\rangle$ is the color CG coefficient for $c \bar{c}$ pairs projecting out appropriate bound states, and $\left\langle s_{1} ; s_{2} \mid S S_{z}\right\rangle$ is the spin CG coefficient.
$\mathcal{M}\left[e^{-}\left(k_{1}\right) e^{+}\left(k_{2}\right) \rightarrow c_{j}^{s_{1}}\left(p_{1}+q\right)+\bar{c}_{k}^{s_{2}}\left(p_{1}-q\right)+\gamma(k)\right]$ is the quark level scattering amplitude.

Expansions of quark-level amplitudes up-to $\mathcal{O}\left(v^{4}\right)$

- S wave

$$
\begin{equation*}
\mathcal{M}\left[(c \bar{c})\left({ }^{1} S_{0}^{[1]}\right)\right]=\left.\mathcal{M}_{s}\right|_{q=0}+\left.\frac{1}{2} q^{\alpha} q^{\beta} \frac{\partial^{2}\left(\sqrt{\frac{m_{c}}{E_{q}}} \mathcal{M}_{s}\right)}{\partial q^{\alpha} \partial q^{\beta}}\right|_{q=0}+\mathcal{O}\left(q^{4}\right) \tag{3}
\end{equation*}
$$

- P wave

$$
\begin{align*}
& \mathcal{M}\left[(c \bar{c})\left({ }^{3} P_{J}^{[1]}\right)\right]=\epsilon_{\rho}\left(s_{z}\right) q_{\sigma}\left(L_{z}\right)\left(\left.\frac{\partial \mathcal{M}_{t}^{\rho}}{\partial q^{\sigma}}\right|_{q=0}\right. \\
& \left.+\left.\frac{1}{6} q^{\alpha} q^{\beta} \frac{\partial^{3}\left(\sqrt{\frac{m_{c}}{E_{q}}} \mathcal{M}_{t}^{\rho}\right)}{\partial q^{\alpha} \partial q^{\beta} \partial q^{\sigma}}\right|_{q=0}\right)+\mathcal{O}\left(q^{5}\right) \tag{4}
\end{align*}
$$

- D wave

$$
\mathcal{M}\left[(c \bar{c})\left({ }^{1} D_{2}^{[1]}\right)\right]=\left.\frac{1}{2} q^{\alpha} q^{\beta} \frac{\partial^{2}\left(\sqrt{\frac{m_{c}}{E_{q}}} \mathcal{M}_{s}\right)}{\partial q^{\alpha} \partial q^{\beta}}\right|_{q=0}+\mathcal{O}\left(q^{4}\right) \cdot(5)
$$

Wave function of $c \bar{c}$

(1) Consider the Fourier transform between the momentum space and position space (PRD55.5853; PRD86,094017)

$$
\begin{align*}
\int \mathrm{d}^{3} \vec{q} \Phi_{c \bar{c}}(\vec{q}) & \propto \sqrt{Z_{c \bar{c}}^{H}} R_{c \bar{c}(0)} \\
\int \mathrm{d}^{3} \vec{q} \vec{q}^{\alpha} \Phi_{c \bar{c}}(\vec{q}) & \propto \sqrt{Z_{c \bar{c}}^{H}} R_{c \bar{c}}^{\prime}(0) \\
\int \mathrm{d}^{3} \vec{q} \vec{q}^{\alpha} \vec{q}^{\beta} \Phi_{c \bar{c}}(\vec{q}) & \propto \sqrt{Z_{c \bar{c}}^{H}} R_{c \bar{c}}^{\prime \prime}(0) \\
\int \mathrm{d}^{3} \vec{q} \vec{q}^{\alpha} \vec{q}^{\beta} \vec{q}^{\delta} \Phi_{c \bar{c}}(\vec{q}) & \propto \sqrt{Z_{c \bar{c}}^{H}} R_{c \bar{c}(0)}^{\prime \prime \prime}(0) \tag{6}
\end{align*}
$$

(2) $R_{c \bar{c}}(0)$ is the radial Schrodinger wave function at origin. And $R_{c \bar{c}}^{l}(0)$ the derivative of the radial Schrodinger wave function at the origin

$$
\begin{equation*}
R_{c \bar{c}}^{l}(0)=\left.\frac{\mathrm{d}^{l} R_{c \bar{c}}(r)}{\mathrm{d}^{l} r}\right|_{r=0} \tag{7}
\end{equation*}
$$

Wave function of $c \bar{c}$

- $R_{c \bar{c}}(0)$ is correspond to the $\mathcal{O}\left(v^{0}\right)$ S-wave matrix element.
- $R_{c \bar{c}}^{\prime}(0)$ is correspond to the $\mathcal{O}\left(v^{0}\right)$ P-wave matrix element.
- $R_{c \bar{c}}^{\prime \prime}(0)$ is correspond to the $\mathcal{O}\left(v^{2}\right)$ S-wave matrix element or $\mathcal{O}\left(v^{0}\right)$ D-wave matrix element.
- $R_{c \bar{c}}^{\prime \prime \prime}(0)$ is correspond to the $\mathcal{O}\left(v^{2}\right)$ P-wave matrix element.

Relativistic correction K factor

$$
\begin{align*}
K_{v^{2}}\left[\eta_{c}\right] & =-\frac{5 v^{2}}{6}-\frac{r v^{2}}{1-r} \\
K_{v^{2}}\left[\chi_{c 0}\right] & =-\frac{\left(55 r^{2}-28 r+13\right) v^{2}}{10\left(3 r^{2}-4 r+1\right)}-\frac{r v^{2}}{1-r}, \\
K_{v^{2}}\left[\chi_{c 1}\right] & =-\frac{\left(21 r^{2}+30 r-11\right) v^{2}}{10\left(r^{2}-1\right)}-\frac{r v^{2}}{1-r}, \\
K_{v^{2}}\left[\chi_{c 2}\right] & =-\frac{\left(90 r^{3}+113 r^{2}+4 r-7\right) v^{2}}{10(r-1)\left(6 r^{2}+3 r+1\right)}-\frac{r v^{2}}{1-r}, \tag{8}
\end{align*}
$$

where $r=4 m_{c}^{2} / s .-\frac{r v^{2}}{1-r}$ is the relativistic correction of the phase space. If we select $r \rightarrow 0$, the $K_{v^{2}}$ factor is consistent with the large p_{T} behavior at hadron colliders xu,PRD86,094017,2012 .

$D \bar{D}$ component contributions in the molecule model

- The parton-level amplitudes may be compared with the $D \bar{D}$ hadron-level amplitudes

$$
\begin{align*}
& \mathcal{M}\left[e^{-}\left(k_{1}\right) e^{+}\left(k_{2}\right) \rightarrow c \bar{c}\left(2 p_{1}\right)+\gamma\right] \\
\sim & \mathcal{M}\left[e^{-}\left(k_{1}\right) e^{+}\left(k_{2}\right) \rightarrow D \bar{D}\left(2 p_{1}\right)+\gamma\right] \tag{9}
\end{align*}
$$

- But the $R_{c \bar{c}}^{l}(0) \sim v^{2 l} R_{c \bar{c}}^{S}(0) \gg R_{D \bar{D}}(0)$ with the S wave $l=0$ and P wave $l=1$.
- For the binding energy of $c \bar{c}$ and $D \bar{D}$ are several hundreds MeV and several MeV , respectively.
- If $Z_{c \bar{c}}^{H} \sim Z_{D \bar{D}}^{H}$, we can consider the $c \bar{c}$ contributions only.

Paremeters

Our parameters are selected as

$$
\begin{array}{lll}
m_{c}=m_{H} / 2, & \alpha_{s}=0.23 \pm 0.03, & \alpha=1 / 133 \\
v^{2}=0.23 \pm 0.03, & R_{1 S}=1.454 \mathrm{GeV}^{3}, & R_{2 S}=0.927 \mathrm{GeV}^{3} \\
R_{3 S}=0.791 \mathrm{GeV}^{3}, & R_{1 P}^{\prime}=0.131 \mathrm{GeV}^{5}, & R_{2 P}^{\prime}=0.186 \mathrm{GeV}^{5} \\
R_{1 D}^{\prime \prime}=0.031 \mathrm{GeV}^{7} . & & \tag{10}
\end{array}
$$

The wave functions at origin for higher states are estimated as

$$
\begin{align*}
R_{4 S} & =2 \times R_{3 S}-R_{2 S}=0.655 \mathrm{GeV}^{3} \\
R_{3 P}^{\prime} & =\left(R_{1 P}^{\prime}+R_{2 P}^{\prime}\right) / 2=0.159 \mathrm{GeV}^{5} \\
R_{2 D}^{\prime \prime} & =R_{1 D}^{\prime \prime}=0.031 \mathrm{GeV}^{7} \tag{11}
\end{align*}
$$

Numerical results for pure charmonium

$\eta_{c}(n S)$ and $\eta_{c 2}(n D)$

$\sqrt{s}(\mathrm{GeV})$		4.00	4.25	4.50	4.75	5.00	10.6	11.2
$\eta_{c}(1 \mathrm{~S})$	LO	2781	2494	2192	1906	1652	117	95
(2981)	RC	-1332	-1033	-814	-650	-526	-25	-20
	QCD	-909	-807	-700	-598	-508	-22	-16
	Total	540 ± 210	653 ± 170	678 ± 140	658 ± 115	617 ± 95	70 ± 4	58 ± 3
$\eta_{c}(2 S)$	LO	563	684	706	679	629	58	48
(3639)	RC	-730	-563	-442	-352	-284	-13	-10
	QCD	-177	-221	-231	-222	-205	-13	-10
	Total	-344 ± 98	-100 ± 79	33 ± 65	105 ± 54	141 ± 46	32 ± 2	27 ± 2
$\eta_{c}(3 S)$	LO		233	337	374	377	44	36
(3994)	RC		-450	-352	-279	-225	-10	-8
	QCD		-72	-107	-121	-123	-10	-8
	Total		-288 ± 59	-122 ± 48	-27 ± 40	29 ± 33	24 ± 2	20 ± 1
$\eta_{c}(4 S)$	LO			133	198	225	34	28
(4250)	RC			-279	-221	-178	-8	-6
	QCD			-41	-63	-73	-8	-7
	Total			-186 ± 37	-86 ± 30	-26 ± 25	17 ± 1	15 ± 1
$\eta_{c 2}(1 D)$	LO	4.0	6.4	7.3	7.3	7.0	0.71	0.58
(3796)				1.5	2.9	3.5	3.7	0.47
$\eta_{c 2}(2 D)$	LO							
(4099)								

$\eta_{c}(1 S)$

$\eta_{c 2}(n D)$

The predictions near the threshold may be not reliable

The NRQCD requires that the energy of photon at the center of the mass frame of $e^{+} e^{-}$

$$
\begin{equation*}
E_{\gamma}=\frac{s-M_{H}^{2}}{2 \sqrt{s}} \sim \sqrt{s}-M_{H}+\mathcal{O}\left[\left(1-M_{H} / \sqrt{s}\right)^{2}\right] \tag{12}
\end{equation*}
$$

be larger than $\Lambda_{Q C D} \sim 300 \mathrm{MeV} \sim m_{c} v^{2}$. Although this process is a QED process, the prediction is not reliable and only a reference value if this requirement is not satisfied.

$\chi_{c 0}(n P)$

$\sqrt{s}(\mathrm{GeV})$		4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c 0}(1 P)$	LO	328	132	53	21	1.81	1.6
(3415)	RC	268	107	48	22	-0.77	-0.63
	QCD	-228	-107	-52	-26	-0.38	-0.29
	Total	368 ± 46	131 ± 20	49 ± 9	17 ± 4	1.42 ± 0.11	1.22 ± 0.09
$\chi_{c 0}(2 P)$	LO	1991	665	271	119	1.30	1.18
(3918)	RC	3102	680	230	96	-0.64	-0.54
	QCD	-1013	-384	-177	-89	0.39	0.30
	Total	4080 ± 426	962 ± 102	324 ± 38	127 ± 17	1.04 ± 0.10	0.94 ± 0.08
$\chi_{c 0}(3 P)$	LO		1073	384	164	0.82	0.75
(4131)	RC		1600	391	140	-0.44	-0.38
	QCD		-551	-223	-107	0.29	0.23
	Total		2121 ± 220	554 ± 59	198 ± 23	0.67 ± 0.07	0.61 ± 0.06

$\chi_{c 0}(1 P)$

$\chi_{c 1}(n P)$

$\sqrt{s}(\mathrm{GeV})$		4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c 1}(1 P)$	LO	3874	2392	1597	1124	23.5	18.5
(3511)	RC	1296	459	168	52	-4.8	-3.8
	QCD	-1791	-1091	-715	-492	-6.5	-4.9
	Total	3379 ± 288	1760 ± 154	1051 ± 96	685 ± 65	12 ± 1	10 ± 1
$\chi_{c 1}(2 P)$	LO	8854	4244	2495	1624	25.7	20.0
(3901)	RC	9585	2297	789	312	-4.9	-3.9
	QCD	-4041	-1967	-1152	-741	-7.7	-5.7
	Total	14397 ± 1357	4573 ± 394	2131 ± 182	1195 ± 105	13 ± 1	10 ± 1
$\chi_{c 1}(3 P)$	LO		1073	384	164	0.82	0.75
(4178)	RC		1600	391	140	-0.44	-0.38
	QCD		-551	-223	-107	0.29	0.23
	Total		2121 ± 220	554 ± 59	198 ± 23	0.7 ± 0.1	0.6 ± 0.1

$\chi_{c 1}(1 P)$

$\chi_{c 2}(n P)$

$\sqrt{s}(\mathrm{GeV})$		4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c 2}(1 P)$	LO	4724	2590	1562	1004	9.66	7.37
(3556)	RC	2385	880	376	173	-1.16	-0.93
	QCD	-2455	-1384	-851	-557	-6.27	-4.82
	Total	4655 ± 446	2087 ± 213	1086 ± 121	621 ± 76	2 ± 1	2 ± 1
$\chi_{c 2}(2 P)$	LO	13419	5581	2931	1927	11.29	8.53
(3927)	RC	17835	3965	1355	565	-1.22	-0.99
	QCD	-6423	-2822	-1533	-926	-7.25	-5.52
	Total	24862 ± 2472	6723 ± 635	2754 ± 267	1368 ± 141	3 ± 1	2 ± 1
$\chi_{c 2}(3 P)$	LO		8938	3607	1886	8.55	6.40
(4208)	RC		14212	2949	995	-0.83	-0.68
	QCD		-4210	-1803	-977	-5.43	-4.10
	Total		18941 ± 1933	4753 ± 451	1904 ± 182	2 ± 1	2 ± 1

$\chi_{c 2}(1 P)$

$$
\begin{array}{r}
\sigma\left[e^{+} e^{-} \rightarrow \chi_{\mathrm{c} 2} \gamma\right](\mathrm{fb}) \\
12000 \\
10000 \\
8000 \\
6000 \\
4000
\end{array} \ddots_{2}
$$

Numerical results for $X Y Z$

Numerical results for $X Y Z: X(3872)$

In the sight of the mixture state of $\chi_{c 1}(2 P)$ and $D^{0} \bar{D}^{\star 0}$ molecule, the cross sections of $X(3872)$ production can be expressed as following c.Meng, arXiv:1304.6710

$$
\begin{equation*}
d \sigma\left[X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right]=d \sigma\left[\chi_{c 1}(2 P)\right] \times k \tag{13}
\end{equation*}
$$

where $k=Z_{c \bar{c}}^{X(3875)} \times \operatorname{Br}\left[X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right]$.
$\operatorname{Br}\left[X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right]$is the branching fraction for $X(3872)$ decay to $J / \psi \pi^{+} \pi^{-} . Z_{c \bar{c}}^{X(3875)}$ is the possibility of the $\chi_{c 1}(2 P)$ component in $X(3872)$. And $k=0.018 \pm 0.04$.

$X(3872)$

$X(3872)$-continuum contributions

$\sqrt{s}(\mathrm{GeV})$	4.15	4.2	4.25	4.3	4.35	4.45	4.55
LO	221 ± 49	180 ± 40	150 ± 33	127 ± 28	110 ± 24	84 ± 19	66 ± 15
RC	310 ± 69	208 ± 46	146 ± 32	106 ± 24	80 ± 18	47 ± 10	30 ± 7
QCD	-100 ± 22	-82 ± 18	-69 ± 15	-59 ± 13	-51 ± 11	-39 ± 9	-31 ± 7
Total	431 ± 96	306 ± 68	227 ± 51	175 ± 39	138 ± 31	92 ± 20	65 ± 14
(GeV)						NRQCD prediction for continue	BESIII $[46,47]$
4.009			<130 at $90 \% \mathrm{CL}$.				
4.160		401 ± 89					
4.230		255 ± 57	$320 \pm 150 \pm 20$				
4.260		215 ± 48		$350 \pm 120 \pm 20$			
4.360		133 ± 29					
4.415		105 ± 23					
4.660		47 ± 10					

$$
\begin{equation*}
E_{\gamma}[4.009]=134 \mathrm{MeV}, E_{\gamma}[4.160]=270 \mathrm{MeV} \tag{14}
\end{equation*}
$$

X (3872)-resonance contributions

The resonance contributions can be estimated as:

$$
\begin{equation*}
\sigma_{R e s}[s]=\frac{12 \pi \Gamma\left[\text { Res } \rightarrow e^{+} e^{-}\right] \Gamma[\text { Res } \rightarrow \gamma X]}{\left(s-M^{2}\right)^{2}+\left(M \Gamma_{\text {tot }}[\text { Res }]\right)^{2}} \tag{15}
\end{equation*}
$$

With $X(3872)$ considered as $2 P$ states, the largest decay widths are $\psi(4040)$ and $\psi(4160)$, which are considered as the mixing of $\psi(3 S)$ and $\psi(2 D)$.
The parameters for $\psi(4040)$ and $\psi(4160)$

$$
\begin{aligned}
& \Gamma\left[\psi(4040) \rightarrow e^{+} e^{-}\right]=0.87 \mathrm{keV}, \Gamma[\psi(4040) \rightarrow \gamma X]=40 \mathrm{keV} \\
& \Gamma\left[\psi(4160) \rightarrow e^{+} e^{-}\right]=0.83 \mathrm{keV}, \Gamma[\psi(4160) \rightarrow \gamma X]=140 \mathrm{keV} \\
& \Gamma_{t o t}[\psi(4040)]=80 \mathrm{MeV}, \Gamma_{t o t}[\psi(4160)]=103 \mathrm{MeV}
\end{aligned}
$$

Hence, we can determine the contributions from these resonances

$$
\begin{align*}
& \left(\sigma_{\psi(4040)}[4.23]+\sigma_{\psi(4160)}[4.23]\right) \times k=(62 \pm 14) \mathrm{fb} \\
& \left(\sigma_{\psi(4040)}[4.26]+\sigma_{\psi(4160)}[4.26]\right) \times k=(37 \pm 8) \mathrm{fb} \tag{16}
\end{align*}
$$

Numerical results for $X Y Z: X(3940)$ and $X(4160)$

- $X(3940)$ and $X(4160)$ are found in $e^{+} e^{-} \rightarrow J / \psi(D \bar{D})$ at B factories (PRL100,202001).
- η_{c} and $\chi_{c 0}$ are recoiled with J / ψ, but $\chi_{c 1}$ and $\chi_{c 2}$ are missed (PRL100,202001). The theoretical predictions are consistent with the experimental data (hep-ph/0211181, PRD77,014002; PRD84,034022; JHEP02(2013)089).
- The mass of $\eta_{c}(3 S)$ and $\chi_{c 0}(3 P)$ are predicted as 3994 MeV and 4130 MeV , respectively (PRD79,094004).
- So there should be large $\eta_{c}(3 S)$ or $\chi_{c 0}(3 P)$ component in $X(3940)$ or $X(4160)$ v.V.Braguta,PRD74,094004,2006; K.T.Chao,PLB661,348,2008 .

$X(3940)$ or $X(4160)$

Numerical results for $X Y Z: X(4350)$

$X(4350)$ are found in $\gamma \gamma \rightarrow H \rightarrow \phi J / \psi$ at B factories. $J^{P C}$ is 0^{++}or 2^{++}. PRLL104,112004,2010
The mass of $\chi_{c 2}(3 P)$ is 4208 MeV prD79,044004. Ignore more detail of the mass, we considered it as $\chi_{c 0}(3 P)$ or $\chi_{c 2}(3 P)$, the wave function at origin are estimated as

$$
\begin{equation*}
R^{\prime}=R_{3 P}^{\prime}=\left(R_{1 P}^{\prime}+R_{2 P}^{\prime}\right) / 2=0.159 \mathrm{GeV}^{5} \tag{17}
\end{equation*}
$$

So there should be large $\chi_{c 0}(3 P)$ or $\chi_{c 2}(3 P)$ component in $X(4350) \times$.Liu, PRLL104,122001,2009; z.G. Wang, PLB690,403,2010 .

$X(4350)$

Summary and discussion

Summary and discussion

(1) We can estimate the possible event number at BESIII and Belle. The possible event number is

$$
\begin{equation*}
N=\sigma\left[e^{+} e^{-} \rightarrow \gamma+c \bar{c}[n]\right] \times Z_{c \bar{c}}^{H} \times B r \times \mathcal{L} \times \epsilon \tag{18}
\end{equation*}
$$

(2) where ϵ is the efficiency of detectors are selected as $20 \%, \mathrm{Br}$ is the branch ratio of H to the decay mode, \mathcal{L} is the luminosity.
(3) The integrated luminosity is $1.0 \mathrm{fb}^{-1} @ 4.23 \mathrm{GeV}$, $1.0 \mathrm{fb}^{-1} @ 4.26 \mathrm{GeV}, 0.5 \mathrm{fb}^{-1} @ 4.66 \mathrm{GeV}$, and $1 a b^{-1} @ 10.6 \mathrm{GeV}$.
(1) The decay mode of $n K m \pi$ means $D \bar{D}$ decay and the branch ratio is estimated as 1%.

Possible events at BESIII and Belle

H	Decay	$B r$	$Z_{c c}^{H}$	4.23	4.26	4.66	10.6
η_{c}	$K \bar{K} \pi$	7.2%	1	9	9	5	1012
$\chi_{c 0}$	$2 \pi^{+} 2 \pi^{-}$	2.2%	1	2	2		6
$\chi_{c 1}$	$\gamma l^{+} l^{-}(\gamma J / \psi)$	4.1%	1	29	27	5	101
$\chi_{c 2}$	$\gamma l^{+} l^{-}(\gamma J / \psi)$	2.3%	1	23	20	3	10
$\eta_{c 2}(1 D)$	$\gamma \gamma K \bar{K} \pi$	1.5%	1				2
$\eta_{c}(2 S)$	$K \bar{K} \pi$	1.9%	1				123
$X(3872)\left(\chi_{c 1}(2 P)\right)$	$\pi^{+} \pi^{-} l^{+} l^{-}\left(\pi^{+} \pi^{-} J / \psi\right)$	0.6%	0.36	6	5	1	6
$X(3915)\left(\chi_{c 0}(2 P)\right)$	$\pi^{+} \pi^{-} \pi^{0} l^{+} l^{-}(\omega J / \psi)$	1%	1	9	8		2
$Z(3930)\left(\chi_{c 2}(2 P)\right)$	$n K m \pi(D \bar{D})$	1%	1	57	46	4	6
$X(3940)\left(\eta_{c}(3 S)\right)$	$n K m \pi(D \bar{D})$	1%	1				48

Summary

(1) We study the production of $C=+$ charmonium states H in $e^{+} e^{-} \rightarrow \gamma+H$ at BESIII with $H=\eta_{c}(n S)(\mathrm{n}=1,2,3,4)$, $\chi_{c J}(n P)(\mathrm{n}=1,2,3)$, and ${ }^{1} D_{2}(n D)(\mathrm{n}=1,2)$.
(2) The radiative and relativistic corrections are calculated to next to leading order for S and P wave states.
(3) We then argue that search for the $C=+X Y Z$ states $X(3872), X(4160), X(3940)$ and $X(4350)$ in $e^{+} e^{-} \rightarrow \gamma+H$ at BESIII and Belle may be helpful to clarify the nature of these states.

Thanks!

