Production of C = + XYZ recoiled with γ in e^+e^- experiments

Guang-zhi Xu

Beihang University, Beijing 100191, China Email: still200@gmail.com

November 19-22, 2013 @ Huangshan 2nd workshop on the XYZ particles Based on : ArXiv: 1310.0374, by Y.J.Li, G.Z.Xu, K.Y.Liu and Y.J.Zhang

- Introduction
- The frame of calculation
- The results for pure charmonium
- The results for C = + XYZ states
 - X(3872)
 - X(3940) and X(4160)
 - X(4350)
- Summary and discussion

Introduction-X(3872)

- Discovered by the Belle collaboration(2003). PRL91,262001
- Confirmed by the CDF 2003, D0 2004, BaBar 2004, LHCb 2011, and CMS 2013 collaborations.
- Mass: Close to the $D^0 \overline{D}^{\star 0}$ threshold within 1MeV, J^{PC} : 1⁺⁺ or 2⁻⁺(Excluded by LHCb EPJ C72,1972,2012)
- Theoretical hypothesis: standard charmonium, $D^0 \overline{D}^{*0}$ molecule, tetraquark , quark-gluon mixture state, threshold effect...

QWG,2011; N.Drenska, 2010; S.Godfrey, 2008; M.Nielsen, 2010; Eric.S.Swanson, 2006; C.Hambrock, 2013;

$X(3872) \Leftrightarrow \chi_{c1}(2P)?$

• Potential model:

 $\begin{array}{l} {\sf Mass}[\chi_{c1}(2P)] \approx {\it 3950}{\sf MeV}, {\sf lager than } X(3872) {\rm ~about ~75}{\sf MeV}. \\ {\sf If ~Z}({\it 3930}) = \chi_{c2}(2P), {\rm ~Mass}[2^3P_2 - X(3872)] = 58{\sf MeV} > 50{\sf MeV}. \\ {\sf (Screening effects: draw down the mass to ~3900{\sf MeV}_{\sf PRD79,094004}.)} \end{array}$

- If Mass[$\chi_{c1}(2P)$] = 3872MeV, Width= 1.7MeV. $B[2^3P_1 \rightarrow \gamma \psi(2S)]/B[2^3P_1 \rightarrow \gamma J/\psi] \approx 6.$ CONSISTENT with X(3872)
- D0:no significant differences between the X(3872) and $\psi(2S)$
- Failed to explain the Isospin-violating in the $J/\psi\rho^0$, $J/\psi\omega$ decay patterns.

	State	Expt.	Theor.
1P	$\chi_2(1^3 P_2)$	3556.20 ± 0.09	3554
	$\chi_1(1^3 P_1)$	3510.66 ± 0.07	3510
	$\chi_0(1^3\mathrm{P}_0)$	3414.75 ± 0.31	3433
	$h_c(1^1 P_1)$	3525.93 ± 0.27	3519
2P	$\chi_2(2^3 P_2)$	$3929 \pm 5 \pm 2$	3937
	$\chi_1(2^3 P_1)$		3901
	$\chi_0(2^3\mathrm{P}_0)$		3842
	$h_{c}(2^{1}P_{1})$		3908

B.Q.Li et al, PRD79,094004,2009

CDF, PRL93, 162002, 2004

- In 1977, Rugula, Georgi, Glashow and Voloshin, Okun presented molecule conjecture. In 1994, Turnqvist predicted the mass of the ground $D\bar{D}$ molecule state was about 3870MeV.
- Mass and quantum number can be explained naturally.
- Can explain the Isospin-violation in the $J/\psi\rho^0, J/\psi\omega$ decay mode E.S.Swanson,PLB598,197,2004 .
- Prediction on charged molecule states(D^+D^{*0}, D^0D^{*-}), but no explicit signals in the experimental measurements.
- Puzzle of the production at the hadron colliders: Tevatron and LHC.

$X(3872) \Leftrightarrow$ Mixture with $\chi_{c1}(2P)$ and Molecule?

Others in support of that X(3872) has a $c\bar{c}$ component,

- QCDSR supports $c\bar{c}(97\%)$ mixed with molecule or tetraquark state.
- Screening potential model (calculation on the width) supports the idea of mixture with a primary $c\bar{c}$ component.

X(3872) as mixture with $\chi_{c1}(2P)$ and $D\bar{D}^{\star 0}$ molecule components, (Meng's talk, C.Meng,hep-ph/0506222)

- $Z_{c\bar{c}}$ as the possibility of the $\chi_{c1}(2P)$ component in X(3872). Universal, obtained by fitting to the experimental data.
- Molecule component dominates the decay patterns.
- In the B and hadron production process, $\chi_{c1}(2P)$ dominates. (Predictions of prompt X(3872) hadron-production at NLO in α_s are consistent with the CMS and the CDF data c.Meng,hep-ph/1304.6710 and disfavor the pure $\chi_{c1}(2P)$ view M.Butenschoen,hep-ph/1303.6524) Note: LHCb data will also be compatible when taking the relativistic correction contribution into account.

	State, $m(\Gamma)$ in MeV, J^{PC}		Prod.(Decay)	Ref
X(3872)	$3871.68 \pm 0.17 (< 1.2)$	1++	$B \to K \left(\pi \pi J/\psi \right)$	PRL91,262001
			$B \to K \left(\omega J/\psi \right)$	(hep-ex/0505037; PRD82,011101)
			$B \to K \left(D^0 \bar{D}^* \right)$	PRL97,162002; PRD77,011102
			$B \to K \left(\gamma J/\psi \right)$	PRD74,071101
			$p\bar{p} ightarrow (\pi\pi J/\psi) +$	PRL93,072001; PRL98,132002
			$pp \rightarrow (\pi \pi J/\psi) +$	JHEP04(2013)154, 1302.6269
X(3915)	$3917.5 \pm 2.7(27 \pm 10)$	0^{++}	$B \to K(\omega J/\psi)$	PRL94.182002; PRL101,082001
			$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	PRD82,011101; PRD86,072002
X(3940)	$3942^{+9}_{-8}(37^{+27}_{-17})$	J^{P+}	$e^+e^- \to J/\psi \left(D\bar{D}^*\right)$	PRL100,202001
Y(4140)	$4143.0 \pm 3.1(12^{+9}_{-6})$	J^{P+}	$B \rightarrow K \left(\phi J / \psi \right)$	arXiv1101.6058
X(4160)	$4156^{+29}_{-25}(139^{+110}_{-60})$	J^{P+}	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	PRL100,202001
Y(4274)	$4274.4^{+8.4}_{-6.7}(32^{+22}_{-15})$	J^{P+}	$B \rightarrow K \left(\phi J / \psi \right)$	arXiv1101.6058
X(4350)	$4350.6_{-5.1}^{+4.6}(13.3_{-10}^{+18})$	0/2++	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	PRL104,112004

- Motivated by two poionts:
 - 1)large cross sections for the double charmonium production recoiled by J/ψ

2)quantum number of photon is same as J/ψ

- Identifying the C = + charmonium states H in the $e^+e^- \rightarrow \gamma^* \rightarrow H + \gamma$ at B factories was proposed in the Ref.(D.Li,PRD80,114014,2009 and W.L.Sang,PRD81,034028, 2010).
- The radiative corrections of $e^+e^- \to \gamma^\star \to H + \gamma$ at B factories were calculated.
- The relativistic correction of $e^+e^- \to \gamma^\star \to \eta_c + \gamma$ was also included in the Sang's paper.

$e^+e^- \rightarrow X(3872) + \gamma$ at BESIII

- Recently, BesIII reports the cross sections of $e^+e^- \to \gamma X(3872)~_{(arxiv/1310.0280,arxiv/1310.4101)}$
 - $$\begin{split} &\sigma\times \mathrm{Br}[J/\psi\pi\pi]<0.13\mathrm{pb} \ \ \mathrm{at} \ 90\% \ \mathrm{CL},\\ &\sigma\times \mathrm{Br}[J/\psi\pi\pi]=0.32\pm0.15\pm0.02\mathrm{pb}\\ &\sigma\times \mathrm{Br}[J/\psi\pi\pi]=0.35\pm0.12\pm0.02\mathrm{pb}\\ &\sigma\times \mathrm{Br}[J/\psi\pi\pi]<0.39\mathrm{pb} \ \ \mathrm{at} \ 90\% \ \mathrm{CL}. \end{split}$$
- $\sqrt{s} = 4.009 \text{GeV}$
- $\sqrt{s} = 4.230 \text{GeV}$
- $\sqrt{s} = 4.260 \text{GeV}$
- $\sqrt{s} = 4.360 \text{GeV}$

Where $Br[J/\psi\pi\pi]$ means $Br[X(3872) \rightarrow J/\psi\pi\pi]$.

• The studies of $\psi(4160) \rightarrow X(3872)\gamma$ $_{\rm (arxiv/1304.8101)}$ and $\psi(4260) \rightarrow X(3872)\gamma$ (F.K.Guo's talk, arxiv/1306.3096) are proposed to probe the molecular content of the X(3872).

The frame of Calculation

۲

- Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.
- In the Nonrelativistic QCD (NRQCD) approach, the production of heavy quarkonium is factored to short distance coefficients and long distance matrix elements(LDMEs).
- The short distance coefficients can be calculated perturbatively with the expansions by α_s .
- The LDMES can be scaled by the relative velocity v between the quark and antiquark. v^2 is about 0.3 for charmonium and about 0.1 for bottomonium.

$$R = \sum_{n} F_n < \mathcal{O}(n) >$$

$$F_n = F_n^0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 +)$$

$$< \mathcal{O}(n) > \propto v^{d_n}$$
(1)

In the NRQCD factorization framework, the amplitude in the rest frame of H as (PRD78,074022; PRD80,114014; PRD81,034028)

$$\mathcal{M}(e^{-}(k_{1})e^{+}(k_{2}) \to H_{c\bar{c}}(^{2S+1}L_{J})(2p_{1}) + \gamma)$$

$$= \sum_{L_{z}S_{z}} \sum_{s_{1}s_{2}} \sum_{jk} \int \mathrm{d}^{3}\vec{q} \Phi_{c\bar{c}}(\vec{q}) \langle s_{1}; s_{2} \mid SS_{z} \rangle \langle 3j; \bar{3}k \mid 1 \rangle$$

$$\times \mathcal{M}\left[e^{-}(k_{1})e^{+}(k_{2}) \to c_{j}^{s_{1}}(p_{1}+q) + \bar{c}_{k}^{s_{2}}(p_{1}-q) + \gamma(k)\right] (2)$$

where $\langle 3j; \bar{3}k \mid 1 \rangle = \delta_{jk} / \sqrt{N_c}$, $\langle s_1; s_2 \mid SS_z \rangle$ is the color CG coefficient for $c\bar{c}$ pairs projecting out appropriate bound states, and $\langle s_1; s_2 \mid SS_z \rangle$ is the spin CG coefficient. $\mathcal{M}\left[e^-(k_1)e^+(k_2) \rightarrow c_j^{s_1}(p_1+q) + \bar{c}_k^{s_2}(p_1-q) + \gamma(k)\right]$ is the quark level scattering amplitude.

Expansions of quark-level amplitudes up-to $\mathcal{O}(v^4)$

• S wave

$$\mathcal{M}[(c\bar{c})({}^{1}S_{0}^{[1]})] = \mathcal{M}_{s}\Big|_{q=0} + \frac{1}{2}q^{\alpha}q^{\beta}\frac{\partial^{2}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{s})}{\partial q^{\alpha}\partial q^{\beta}}\Big|_{q=0} + \mathcal{O}(q^{4}).$$
(3)

• P wave

$$\mathcal{M}[(c\bar{c})({}^{3}P_{J}^{[1]})] = \epsilon_{\rho}(s_{z})q_{\sigma}(L_{z})\left(\frac{\partial\mathcal{M}_{t}^{\rho}}{\partial q^{\sigma}}\Big|_{q=0} + \frac{1}{6}q^{\alpha}q^{\beta}\frac{\partial^{3}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{t}^{\rho})}{\partial q^{\alpha}\partial q^{\beta}\partial q^{\sigma}}\Big|_{q=0}) + \mathcal{O}(q^{5}).$$
(4)

• D wave

$$\mathcal{M}[(c\bar{c})(^{1}D_{2}^{[1]})] = \frac{1}{2}q^{\alpha}q^{\beta}\frac{\partial^{2}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{s})}{\partial q^{\alpha}\partial q^{\beta}}\Big|_{q=0} + \mathcal{O}(q^{4})$$
(5)

Wave function of $c\bar{c}$

 Consider the Fourier transform between the momentum space and position space (PRD55,5853; PRD86,094017)

$$\int d^{3}\vec{q} \ \Phi_{c\bar{c}}(\vec{q}) \propto \sqrt{Z_{c\bar{c}}^{H}}R_{c\bar{c}}(0)$$

$$\int d^{3}\vec{q} \ \vec{q}^{\alpha}\Phi_{c\bar{c}}(\vec{q}) \propto \sqrt{Z_{c\bar{c}}^{H}}R_{c\bar{c}}'(0)$$

$$\int d^{3}\vec{q} \ \vec{q}^{\alpha}\vec{q}^{\beta}\Phi_{c\bar{c}}(\vec{q}) \propto \sqrt{Z_{c\bar{c}}^{H}}R_{c\bar{c}}''(0)$$

$$\int d^{3}\vec{q} \ \vec{q}^{\alpha}\vec{q}^{\beta}\vec{q}^{\delta}\Phi_{c\bar{c}}(\vec{q}) \propto \sqrt{Z_{c\bar{c}}^{H}}R_{c\bar{c}}''(0).$$
(6)

O $R_{c\bar{c}}(0)$ is the radial Schrodinger wave function at origin. And $R_{c\bar{c}}^l(0)$ the derivative of the radial Schrodinger wave function at the origin

$$R_{c\bar{c}}^{l}(0) = \left. \frac{\mathrm{d}^{l} R_{c\bar{c}}(r)}{\mathrm{d}^{l} r} \right|_{r=0}$$
(7)

- $R_{c\bar{c}}(0)$ is correspond to the $\mathcal{O}(v^0)$ S-wave matrix element.
- $R_{c\bar{c}}^{\prime}(0)$ is correspond to the $\mathcal{O}(v^0)$ P-wave matrix element.
- $R_{c\bar{c}}''(0)$ is correspond to the $\mathcal{O}(v^2)$ S-wave matrix element or $\mathcal{O}(v^0)$ D-wave matrix element.
- $R_{c\bar{c}}^{\prime\prime\prime}(0)$ is correspond to the $\mathcal{O}(v^2)$ P-wave matrix element.

Relativistic correction K factor

$$K_{v^{2}}[\eta_{c}] = -\frac{5v^{2}}{6} - \frac{rv^{2}}{1-r},$$

$$K_{v^{2}}[\chi_{c0}] = -\frac{(55r^{2} - 28r + 13)v^{2}}{10(3r^{2} - 4r + 1)} - \frac{rv^{2}}{1-r},$$

$$K_{v^{2}}[\chi_{c1}] = -\frac{(21r^{2} + 30r - 11)v^{2}}{10(r^{2} - 1)} - \frac{rv^{2}}{1-r},$$

$$K_{v^{2}}[\chi_{c2}] = -\frac{(90r^{3} + 113r^{2} + 4r - 7)v^{2}}{10(r - 1)(6r^{2} + 3r + 1)} - \frac{rv^{2}}{1-r},$$
(8)

where $r = 4m_c^2/s$. $-\frac{rv^2}{1-r}$ is the relativistic correction of the phase space. If we select $r \to 0$, the K_{v^2} factor is consistent with the large p_T behavior at hadron colliders xu,PRD86,094017,2012.

$D\bar{D}$ component contributions in the molecule model

• The parton-level amplitudes may be compared with the $D\bar{D}$ hadron-level amplitudes

$$\mathcal{M}\left[e^{-}(k_{1})e^{+}(k_{2}) \rightarrow c\bar{c}(2p_{1}) + \gamma\right]$$

$$\sim \mathcal{M}\left[e^{-}(k_{1})e^{+}(k_{2}) \rightarrow D\bar{D}(2p_{1}) + \gamma\right]$$
(9)

- But the $R_{c\bar{c}}^l(0) \sim v^{2l} R_{c\bar{c}}^S(0) \gg R_{D\bar{D}}(0)$ with the S wave l = 0 and P wave l = 1.
- For the binding energy of $c\bar{c}$ and $D\bar{D}$ are several hundreds MeV and several MeV, respectively.
- If $Z^H_{c\bar{c}} \sim Z^H_{D\bar{D}}$, we can consider the $c\bar{c}$ contributions only.

Our parameters are selected as

$$\begin{split} m_c &= m_H/2, & \alpha_s = 0.23 \pm 0.03, & \alpha = 1/133, \\ v^2 &= 0.23 \pm 0.03, & R_{1S} = 1.454 \text{GeV}^3, & R_{2S} = 0.927 \text{GeV}^3, \\ R_{3S} &= 0.791 \text{GeV}^3, & R'_{1P} = 0.131 \text{GeV}^5, & R'_{2P} = 0.186 \text{GeV}^5, \\ R''_{1D} &= 0.031 \text{GeV}^7. \end{split}$$

The wave functions at origin for higher states are estimated as

$$R_{4S} = 2 \times R_{3S} - R_{2S} = 0.655 \text{GeV}^3,$$

$$R'_{3P} = (R'_{1P} + R'_{2P})/2 = 0.159 \text{GeV}^5,$$

$$R''_{2D} = R''_{1D} = 0.031 \text{GeV}^7.$$
(11)

Numerical results for pure charmonium

$\eta_c(nS)$ and $\eta_{c2}(nD)$

$\sqrt{s}(G$	eV)	4.00	4.25	4.50	4.75	5.00	10.6	11.2
$\eta_c(1S)$	LO	2781	2494	2192	1906	1652	117	95
(2981)	\mathbf{RC}	-1332	-1033	-814	-650	-526	-25	-20
	QCD	-909	-807	-700	-598	-508	-22	-16
	Total	540 ± 210	$653{\pm}170$	$678{\pm}140$	$658{\pm}115$	$617{\pm}95$	70 ± 4	58 ± 3
$\eta_c(2S)$	LO	563	684	706	679	629	58	48
(3639)	RC	-730	-563	-442	-352	-284	-13	-10
	QCD	-177	-221	-231	-222	-205	-13	-10
	Total	-344 ± 98	-100 ± 79	$33{\pm}65$	105 ± 54	$141{\pm}46$	32 ± 2	27 ± 2
$\eta_c(3S)$	LO		233	337	374	377	44	36
(3994)	\mathbf{RC}		-450	-352	-279	-225	-10	-8
	QCD		-72	-107	-121	-123	-10	-8
	Total		-288 ± 59	-122 ± 48	-27 ± 40	29 ± 33	24 ± 2	20 ± 1
$\eta_c(4S)$	LO			133	198	225	34	28
(4250)	\mathbf{RC}			-279	-221	-178	-8	-6
	QCD			-41	-63	-73	-8	-7
	Total			-186 ± 37	$-86{\pm}30$	-26 ± 25	17 ± 1	15 ± 1
$\eta_{c2}(1D)$ (3796)	LO	4.0	6.4	7.3	7.3	7.0	0.71	0.58
$\eta_{c2}(2D)$ (4099)	LO		1.5	2.9	3.5	3.7	0.47	0.38

 $\eta_c(1S)$

 $\eta_{c2}(nD)$

The NRQCD requires that the energy of photon at the center of the mass frame of e^+e^-

$$E_{\gamma} = \frac{s - M_H^2}{2\sqrt{s}} \sim \sqrt{s} - M_H + \mathcal{O}\left[(1 - M_H/\sqrt{s})^2 \right]$$
(12)

be larger than $\Lambda_{QCD}\sim 300~{\rm MeV}\sim m_c v^2$. Although this process is a QED process, the prediction is not reliable and only a reference value if this requirement is not satisfied.

-							
$\sqrt{s}(Ge$	eV)	4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c0}(1P)$	LO	328	132	53	21	1.81	1.6
(3415)	\mathbf{RC}	268	107	48	22	-0.77	-0.63
	QCD	-228	-107	-52	-26	-0.38	-0.29
	Total	368 ± 46	$131{\pm}20$	49 ± 9	17 ± 4	$1.42{\pm}0.11$	$1.22{\pm}0.09$
$\chi_{c0}(2P)$	LO	1991	665	271	119	1.30	1.18
(3918)	\mathbf{RC}	3102	680	230	96	-0.64	-0.54
	QCD	-1013	-384	-177	-89	0.39	0.30
	Total	4080 ± 426	$962{\pm}102$	324 ± 38	$127{\pm}17$	$1.04{\pm}0.10$	$0.94{\pm}0.08$
$\chi_{c0}(3P)$	LO		1073	384	164	0.82	0.75
(4131)	\mathbf{RC}		1600	391	140	-0.44	-0.38
	QCD		-551	-223	-107	0.29	0.23
	Total		$2121{\pm}220$	$554{\pm}59$	$198{\pm}23$	$0.67{\pm}0.07$	$0.61{\pm}0.06$

 $\chi_{c0}(1P)$

$\sqrt{s}(G)$	eV)	4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c1}(1P)$	LO	3874	2392	1597	1124	23.5	18.5
(3511)	\mathbf{RC}	1296	459	168	52	-4.8	-3.8
	QCD	-1791	-1091	-715	-492	-6.5	-4.9
	Total	$3379{\pm}288$	$1760{\pm}154$	$1051{\pm}96$	$685{\pm}65$	12 ± 1	$10{\pm}1$
$\chi_{c1}(2P)$	LO	8854	4244	2495	1624	25.7	20.0
(3901)	\mathbf{RC}	9585	2297	789	312	-4.9	-3.9
	QCD	-4041	-1967	-1152	-741	-7.7	-5.7
	Total	$14397 {\pm} 1357$	$4573{\pm}394$	$2131{\pm}182$	$1195{\pm}105$	13 ± 1	$10{\pm}1$
$\chi_{c1}(3P)$	LO		1073	384	164	0.82	0.75
(4178)	\mathbf{RC}		1600	391	140	-0.44	-0.38
	QCD		-551	-223	-107	0.29	0.23
	Total		$2121{\pm}220$	$554{\pm}59$	$198{\pm}23$	$0.7{\pm}0.1$	$0.6{\pm}0.1$

 $\chi_{c1}(1P)$

$\sqrt{s}(G)$	eV)	4.25	4.50	4.75	5.00	10.6	11.2
$\chi_{c2}(1P)$	LO	4724	2590	1562	1004	9.66	7.37
(3556)	\mathbf{RC}	2385	880	376	173	-1.16	-0.93
	QCD	-2455 -1384		-851 -557		-6.27	-4.82
	Total	$4655 {\pm} 446$	$2087{\pm}213$	$1086{\pm}121$	$621{\pm}76$	2 ± 1	$2{\pm}1$
$\chi_{c2}(2P)$	LO	13419	5581	2931	1927	11.29	8.53
(3927)	\mathbf{RC}	17835	3965	1355	565	-1.22	-0.99
	QCD	-6423	-2822	-1533	-926	-7.25	-5.52
	Total	24862 ± 2472	$6723{\pm}635$	$2754{\pm}267$	$1368{\pm}141$	3 ± 1	2 ± 1
$\chi_{c2}(3P)$	LO		8938	3607	1886	8.55	6.40
(4208)	\mathbf{RC}		14212	2949	995	-0.83	-0.68
	QCD		-4210	-1803	-977	-5.43	-4.10
	Total		$18941{\pm}1933$	$4753{\pm}451$	$1904{\pm}182$	2 ± 1	2 ± 1

 $\chi_{c2}(1P)$

Numerical results for $\boldsymbol{X}\boldsymbol{Y}\boldsymbol{Z}$

In the sight of the mixture state of $\chi_{c1}(2P)$ and $D^0\bar{D}^{\star0}$ molecule, the cross sections of X(3872) production can be expressed as following c.Meng, arXiv:1304.6710

$$d\sigma[X(3872) \to J/\psi\pi^+\pi^-] = d\sigma[\chi_{c1}(2P)] \times k,$$
 (13)

where $k = Z_{c\bar{c}}^{X(3875)} \times Br[X(3872) \to J/\psi\pi^{+}\pi^{-}].$ $Br[X(3872) \to J/\psi\pi^{+}\pi^{-}]$ is the branching fraction for X(3872)decay to $J/\psi\pi^{+}\pi^{-}$. $Z_{c\bar{c}}^{X(3875)}$ is the possibility of the $\chi_{c1}(2P)$ component in X(3872). And $k = 0.018 \pm 0.04$. X(3872)

$\sqrt{s}(\text{GeV})$	4.15 4.2		2 4.25	4.3	4.35	4.45	4.55	
LO	$221 \pm 49 180 \pm 40$		±40 150±3	127 ± 28	$110{\pm}24$	$84{\pm}19$	$66{\pm}15$	
\mathbf{RC}	310 ± 69 208 ± 46		±46 146±3	146 ± 32 106 ± 24		47 ± 10	30 ± 7	
QCD	-100±	22 -82	±18 -69±1	$5 -59 \pm 13$	-51 ± 11	-39 ± 9	-31 ± 7	
Total	$431\pm$	96 306=	$\pm 68 227 \pm 5$	$51 175 \pm 39$	$138{\pm}31$	$92{\pm}20$	$65{\pm}14$	
\sqrt{s}	(GeV)	NRQCI) prediction	for continue	e BESII	I [46, 47]		
4.	.009				<130 at	t 90% CL		
4	.160		401 ± 89)				
4.	.230		255 ± 57			$320\pm150\pm20$		
4.	.260	215 ± 48			$350 \pm$			
4.	.360		133 ± 29)	$<\!\!130$ at	t 90% CL		
4.	.415	105 ± 23						
4.	.660		47 ± 10					

 $E_{\gamma}[4.009] = 134 \text{MeV}, \ E_{\gamma}[4.160] = 270 \text{MeV}.$ (14)

X(3872)-resonance contributions

The resonance contributions can be estimated as:

$$\sigma_{Res}[s] = \frac{12\pi\Gamma[Res \to e^+e^-]\Gamma[Res \to \gamma X]}{(s - M^2)^2 + (M\Gamma_{tot}[Res])^2}.$$
 (15)

With X(3872) considered as 2P states, the largest decay widths are $\psi(4040)$ and $\psi(4160)$, which are considered as the mixing of $\psi(3S)$ and $\psi(2D)$. The parameters for $\psi(4040)$ and $\psi(4160)$

$$\begin{split} \Gamma[\psi(4040) \to e^+e^-] &= 0.87 \text{ keV}, \ \Gamma[\psi(4040) \to \gamma X] = 40 \text{ keV} \\ \Gamma[\psi(4160) \to e^+e^-] &= 0.83 \text{ keV}, \ \Gamma[\psi(4160) \to \gamma X] = 140 \text{ keV} \\ \Gamma_{tot}[\psi(4040)] &= 80 \text{ MeV}, \ \Gamma_{tot}[\psi(4160)] = 103 \text{ MeV} \end{split}$$

Hence, we can determine the contributions from these resonances

 $(\sigma_{\psi(4040)}[4.23] + \sigma_{\psi(4160)}[4.23]) \times k = (62 \pm 14) \text{fb}$ $(\sigma_{\psi(4040)}[4.26] + \sigma_{\psi(4160)}[4.26]) \times k = (37 \pm 8) \text{fb}.$ (16)

- X(3940) and X(4160) are found in $e^+e^-\to J/\psi\,(D\bar{D})$ at B factories $_{\rm (PRL100,202001)}$.
- η_c and χ_{c0} are recoiled with J/ψ , but χ_{c1} and χ_{c2} are missed (PRL100,202001). The theoretical predictions are consistent with the experimental data (hep-ph/0211181, PRD77,014002; PRD84,034022; JHEP02(2013)089).
- The mass of $\eta_c(3S)$ and $\chi_{c0}(3P)$ are predicted as $3994~{\rm MeV}$ and $4130~{\rm MeV},$ respectively $_{\rm (PRD79,094004)}$.
- So there should be large $\eta_c(3S)$ or $\chi_{c0}(3P)$ component in X(3940) or X(4160) v.v.Braguta,PRD74,094004,2006; K.T.Chao,PLB661,348,2008 .

X(4350) are found in $\gamma\gamma \to H \to \phi J/\psi$ at B factories . J^{PC} is 0^{++} or $2^{++}.$ $_{\rm PRL104,112004,2010}$ The mass of $\chi_{c2}(3P)$ is 4208 MeV $_{\rm PRD79,094004}$. Ignore more detail of the mass, we considered it as $\chi_{c0}(3P)$ or $\chi_{c2}(3P)$, the wave function at origin are estimated as

$$R' = R'_{3P} = (R'_{1P} + R'_{2P})/2 = 0.159 \text{GeV}^5,$$
 (17)

So there should be large $\chi_{c0}(3P)$ or $\chi_{c2}(3P)$ component in X(4350) x.Liu,PRL104,122001,2009; Z.G.Wang,PLB690,403,2010 .

X(4350)

Summary and discussion

Summary and discussion

• We can estimate the possible event number at BESIII and Belle. The possible event number is

$$N = \sigma[e^+e^- \to \gamma + c\bar{c}[n]] \times Z_{c\bar{c}}^H \times Br \times \mathcal{L} \times \epsilon, \qquad (18)$$

- where e is the efficiency of detectors are selected as 20%, Br is the branch ratio of H to the decay mode, L is the luminosity.
- The integrated luminosity is $1.0fb^{-1}@4.23$ GeV, $1.0fb^{-1}@4.26$ GeV, $0.5fb^{-1}@4.66$ GeV, and $1ab^{-1}@10.6$ GeV.
- The decay mode of $nKm\pi$ means $D\bar{D}$ decay and the branch ratio is estimated as 1%.

Possible events at BESIII and Belle

Н	Decay	Br	$Z^H_{c\bar{c}}$	4.23	4.26	4.66	10.6
η_c	$K\bar{K}\pi$	7.2%	1	9	9	5	1012
χ_{c0}	$2\pi^{+}2\pi^{-}$	2.2%	1	2	2		6
χ_{c1}	$\gamma l^+ l^- (\gamma J/\psi)$	4.1%	1	29	27	5	101
χ_{c2}	$\gamma l^+ l^- (\gamma J/\psi)$	2.3%	1	23	20	3	10
$\eta_{c2}(1D)$	$\gamma\gamma K \bar{K} \pi$	1.5%	1				2
$\eta_c(2S)$	$K\bar{K}\pi$	1.9%	1				123
$X(3872)(\chi_{c1}(2P))$	$\pi^+\pi^-l^+l^-(\pi^+\pi^-J/\psi)$	0.6%	0.36	6	5	1	6
$X(3915)(\chi_{c0}(2P))$	$\pi^+\pi^-\pi^0 l^+l^-(\omega J/\psi)$	1%	1	9	8		2
$Z(3930)(\chi_{c2}(2P))$	$nKm\pi(D\bar{D})$	1%	1	57	46	4	6
$X(3940)(\eta_c(3S))$	$nKm\pi(D\bar{D})$	1%	1				48

- We study the production of C = + charmonium states H in $e^+e^- \rightarrow \gamma + H$ at BESIII with $H = \eta_c(nS)$ (n=1,2,3,4), $\chi_{cJ}(nP)$ (n=1,2,3), and ${}^1D_2(nD)$ (n=1,2).
- The radiative and relativistic corrections are calculated to next to leading order for S and P wave states.
- We then argue that search for the C = + XYZ states X(3872), X(4160), X(3940) and X(4350) in $e^+e^- \rightarrow \gamma ~+~ H$ at BESIII and Belle may be helpful to clarify the nature of these states.

Thanks!