New XYZ results from B-factories

Chengping Shen 沈成平

2nd XYZ workshop 20-21 Nov, 2013 at Huangshan

X(3872)

VOLUME 91, NUMBER 26 PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-} J/\psi$ Decays

S.-K. Choi,⁵ S.L. Olsen,⁶ K. Abe,⁷ T. Abe,⁷ I. Adachi,⁷ Byoung Sup Ahn,¹⁴ H. Aihara,⁴³ K. Akai,⁷ M. Akatsu,²⁰ M. Akemoto,⁷ Y. Asano,⁴⁸ T. Aso,⁴⁷ V. Aulchenko,¹ T. Aushev,¹¹ A. M. Bakich,³⁸ Y. Ban,³¹ S. Banerjee,³⁹ A. Bondar,¹ A. Bozek,²⁵ M. Bračko,^{18,12} J. Brodzicka,²⁵ T. E. Browder,⁶ P. Chang,²⁴ Y. Chao,²⁴ K.-F. Chen,²⁴ B. G. Cheon,³⁷ R. Chistov,¹¹ Y. Choi,³⁷ Y. K. Choi,³⁷ M. Danilov,¹¹ L. Y. Dong,⁹ A. Drutskoy,¹¹ S. Eidelman,¹ V. Eiges,¹¹ J. Flanagan,⁷ C. Fukunaga,⁴⁵ K. Furukawa,⁷ N. Gabyshev,⁷ T. Gershon,⁷ B. Golob,^{17,12} H. Guler,⁶ R. Guo,²² C. Hagner,⁵⁰ F. Handa,⁴² T. Hara,²⁹ N.C. Hastings,⁷ H. Hayashii,²¹ M. Hazumi,⁷ L. Hinz,¹⁶ Y. Hoshi,⁴¹ W.-S. Hou,²⁴ Y.B. Hsiung,^{24,*} H.-C. Huang,²⁴ T. Iijima,²⁰ K. Inami,²⁰ A. Ishikawa,²⁰ R. Itoh,⁷ M. Iwasaki,⁴³ Y. Iwasaki,⁷ J. H. Kang,⁵² S. U. Kataoka,²¹ N. Katayama,⁷ H. Kawai,² T. Kawasaki,²⁷ H. Kichimi,⁷ E. Kikutani,⁷ H. J. Kim,⁵² Hyunwoo Kim,¹⁴ J. H. Kim,³⁷ S. K. Kim,³⁶ K. Kinoshita,³ H. Koiso,⁷ P. Koppenburg,⁷ S. Korpar,^{18,12} P. Križan,^{17,12} P. Krokovny,¹ S. Kumar,³⁰ A. Kuzmin,¹ J. S. Lange,^{4,33} G. Leder,¹⁰ S. H. Lee,³⁶ T. Lesiak,²⁵ S.-W. Lin,²⁴ D. Liventsev,¹¹ J. MacNaughton,¹⁰ G. Majumder,³⁹ F. Mandl,¹⁰ D. Marlow,³² T. Matsumoto,⁴⁵ S. Michizono,⁷ T. Mimashi,⁷ W. Mitaroff,¹⁰ K. Miyabayashi,²¹ H. Miyake,²⁹ D. Mohapatra,⁵⁰ G. R. Moloney,¹⁹ T. Nagamine,⁴² Y. Nagasaka,⁸ T. Nakadaira,⁴³ T.T. Nakamura,⁷ M. Nakao,⁷ Z. Natkaniec,²⁵ S. Nishida,⁷ O. Nitoh,⁴⁶ T. Nozaki,⁷ S. Ogawa,⁴⁰ Y. Ogawa,⁷ K. Ohmi,⁷ Y. Ohnishi,⁷ T. Ohshima,²⁰ N. Ohuchi,⁷ K. Oide,⁷ T. Okabe,²⁰ S. Okuno,¹³ W. Ostrowicz,²⁵ H. Ozaki,⁷ H. Palka,²⁵ H. Park,¹⁵ N. Parslow,³⁸ L. E. Piilonen,⁵⁰ H. Sagawa,⁷ S. Saitoh,⁷ Y. Sakai,⁷ T. R. Sarangi,⁴⁹ M. Satapathy,⁴⁹ A. Satpathy,^{7,3} O. Schneider,¹⁶ A. J. Schwartz,³ S. Semenov,¹¹ K. Senyo,²⁰ R. Seuster,⁶ M. E. Sevior,¹⁹ H. Shibuya,⁴⁰ T. Shidara,⁷ B. Shwartz,¹ V. Sidorov,¹ N. Soni,³⁰ S. Stanič,^{48,†} M. Starič,¹² A. Sugiyama,³⁴ T. Sumiyoshi,⁴⁵ S. Suzuki,⁵¹ F. Takasaki,⁷ K. Tamai,⁷ N. Tamura,²⁷ M. Tanaka,⁷ M. Tawada,⁷ G. N. Taylor,¹⁹ Y. Teramoto,²⁸ T. Tomura,⁴³ K. Trabelsi,⁶ T. Tsukamoto,⁷ S. Uehara,⁷ K. Ueno,²⁴ Y. Unno,² S. Uno,⁷ G. Varner,⁶ K. E. Varvell,³⁸ C. C. Wang,²⁴ C. H. Wang,²³ J. G. Wang,⁵⁰ Y. Watanabe,⁴⁴ E. Won,¹⁴ B. D. Yabsley,⁵⁰ Y. Yamada,⁷ A. Yamaguchi,⁴² Y. Yamashita,²⁶ H. Yanai,²⁷ Heyoung Yang,³⁶ J. Ying,³¹ M. Yoshida,⁷ C. C. Zhang,⁹ Z. P. Zhang,³⁵ and D. Žontar^{17,12}

(Belle Collaboration)

(Received 8 September 2003; published 23 December 2003)

X(3872): properties

First exotic meson candidate found

- Discovered by Belle in 2003 with B⁺→K⁺X(3872)→K⁺J/ψπ⁺π⁻ decays [PRL 92, 262001 (2003)]
- Later confirmed by CDF (2004), D0 (2004) and Babar (2005)

Abundant and well studied exotic state

- Di-pion mass spectrum studied by CDF [PRL 96, 102002 (2006)]
- Quantum numbers constrained to J^{PC}=1⁺⁺ or 2⁻⁺ [PRL 98, 132002 (2007)]

Nature still uncertain, possible models:

- Tetraquark, D⁰D^{0*} molecular state (J^{PC}=1⁺⁺)
- Conventional charmonium

More measurements required:

Quantum numbers, decay modes, possible charged partners

D⁰-D^{*0} "molecule"

Diguark-diantiguark

X(3872): J^{PC}

- Recently determined by LHCb using B⁺ \rightarrow X(3872)K⁺, with X(3872) \rightarrow J/ $\psi(\mu\mu)\pi^{+}\pi^{-}$
 - Five-dimensional angular analysis based on 1 fb⁻¹ and assuming X(3872) $\rightarrow \rho$ (770)J/ ψ
 - X(3872) decay angles: $\cos\theta_x$, $\cos\theta_{\pi\pi}$, $\cos\theta_{J/\psi}$ decay planes: $\Delta\phi_{x,\pi\pi}$, $\Delta\phi_{x,J/\psi}$
 - Test statistics built from likelihood ratio of 2⁻⁺ over 1⁺⁺ hypotheses
 - 1⁺⁺ assignment preferred to 2⁻⁺ with significance larger than 8σ

Search for X(3872) \rightarrow p p

- Search of X decays to pp using inclusive B⁺→ppK⁺ decays
- Three-track final state selected with Boosted Decision Tree based on 12 kinematic variables
- pp invariant mass shows no signal in the X(3872) mass window
- 95% CL exclusion limit on the ratio of BR:

 $\frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}.$

Challenges some of the predictions for the molecular interpretation [PRD 77 (2008) 097501, PRD 77, 034019 (2008)]

Search for X(3872) $\rightarrow \pi^+ \pi^- \chi_{c1}$

Search for C-odd X(3872) partner

 $Br(B^{\pm} \to X(3872)K^{\pm}) \cdot Br(X(3872) \to J/\psi\eta) < 3.8 \times 10^{-6} @ 90\% \text{ C.L.}$ (PDG < 7.7 × 10⁻⁶)

BR(B⁰ \rightarrow X(3872)K⁺ π^{-})×BR(X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}$) = (8.55 ± 1.31 (+0.48-0.76))×10⁻⁶

Search for X(3823) in more channels

Belle found a narrow peak at $X(3823) \rightarrow \chi_{c1} \gamma$ in $B^+ \rightarrow (\chi_{c1} \gamma) K^+$

Its narrow width and properties suggest, it to be Ψ_{2D} (2⁻⁻) charmonium state.

Belle, PRL 111, 032001 (2013)

If so, it is suppressed in $B^+ \rightarrow \Psi_{2D} K^+$. But one can expect it to have reasonable $BR(B^+ \rightarrow \Psi_{2D} K^+ \pi^-)$

 $B^0 \rightarrow \chi_{cJ} \gamma K^+ \pi^-$ can be useful mode to search for X(3823).

- -25 MeV < ΔE<20 MeV</p>
- > E_{γ} scaled ($\Delta E=0$) to improve the resolution of $M_{\chi c1, c2\gamma}$.
- Search for X(3823) and other new state in $M_{\chi c1, c2\gamma}$

X(3823) in $B^0 \rightarrow \gamma X_{c1/c2} K^+ \pi^-$

X(4140) and X(4270)

- First evidence (3.8σ) for a near-threshold narrow peak in the J/ψφ system, reported by CDF in B⁺→J/ψ(μμ)φ(KK)K⁺ decays in 2009, based on 2.7 fb⁻¹.
- Result updated in 2011 with 6 fb⁻¹, significance over 5σ. Assuming relativistic BW:
 - M₁=4143.0^{+2.9}-3.0(stat)±0.6(syst) MeV
 - ◆ Γ₁=15.3^{+10.4}-6.1(stat)±2.5(syst) MeV
- Evidence (3.1o) for a second structure:
 - M₂=4274.4^{+8.4}-6.7(stat)±1.9(syst) MeV
 - Γ₂=32.3+21.9(stat)±7.6(syst) MeV
- Could be cc bound state but well above opencharm threshold (3740 MeV). Some models:
 - Molecular (D_s D_s) state
 - Hybrid particle (qqg)
 - Four-quark combination (ccss)
- No significant first structure from Belle in exclusive B decays. 3.2σ evidence for second structure at 4350 MeV in γγ→J/ψφ
 - Exclusion limits on partial width disfavor molecular scenarios with 0⁺⁺, 2⁺⁺

Searches at LHCb

Search based on 370 pb⁻¹ in B⁺→J/ψφK⁺ decays:

- 382±22 B⁺ candidate decays observed
- CDF fit model used to quantify X(4140) and X(4270) yields
- No significant signal observed in either case. 2.4σ tension with CDF
- 90% CL exclusion limits on ratios of branching fractions

$$\frac{\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi\phi)}{\mathcal{B}(B^+ \to J/\psi\phi K^+)} < 0.07$$

$$\frac{\mathcal{B}(B^+ \to X(4274)K^+) \times \mathcal{B}(X(4274) \to J/\psi \phi)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} < 0.08$$

Searches at CMS

Search based on 5.2 fb⁻¹ in B⁺→J/ψ**φK⁺ decays**:

NEV

- Largest sample so far: 2480±160 B⁺ candidates
- Fitted Δ m distribution corrected for detector efficiency
 - Efficiency fairly uniform over mass spectrum (<20%)
- Fit model: S-wave relativistic BW for signal, and three-body phase space
 - Event mixing used as cross check
- First peak observed with significance exceeding 5σ
 - M₁ =4148.0±2.4(stat.)±6.3(syst.) MeV
 - Γ₁ =28⁺¹⁵-11(stat.)±19(syst.) MeV
 - Evidence for a second peak:
 - M₂ =4313.8±5.3(stat.)±7.3(syst.) MeV
 - Γ₂ =38⁺³⁰-16(stat.) ± 16 (syst.) MeV
 - Parameters of the second structure my be affected by $\varphi \textbf{K}^{\star}$ reflections
- Analysis performed with tighter B⁺ signal selection gives consistent results

arXiv:1309.6920

Searches at D0

Search based on 10.4 fb⁻¹ in B⁺ \rightarrow J/ $\psi \varphi$ K⁺ decays:

- 215 ± 37 B+ candidate decays observed
- Efficiency flat over mass spectrum within 10%
- Fit results for first structure
 - Relativistic BW with detector resolution of 4 MeV over threebody phase space background

NEW

- 52 ± 19 candidates: 3.1σ (2.6σ with LEE)
- M₁=4159.0±4.3(stat)±6.6(syst) MeV
- ◆ Γ₁=19.9±12.6+1-8 MeV
- Fit results for second structure:
 - 47±20 candidates with width constrained to 30 MeV
 - M₂=4328.5±12.0(stat) MeV
- Cross checks:
 - Distributions of J/\u03c6 combined with up to three charged tracks are structureless
 - No evidence of effects associated to the newly discovered $Z(3900)^{\pm} \rightarrow J/\psi\pi$

arXiv:1309.6580

	M1 (MeV)	Γ_1 (MeV)	M ₂ (MeV)	Γ_2 (MeV)	
Belle	-	-	4350 ^{+4.6} -5.1±0.7	13 ⁺¹⁸ -9±4	
CDF	4143.0 ^{+2.9} -3.0±0.6	15.3 ^{+10.4} -6.1±2.5	4274.4 ^{+8.4} -6.7±1.9	32.3+21.9±7.6	
CMS	4148.0±2.4±6.3	28 ⁺¹⁵ -11±19	4313.8±5.3±7.3	38 ⁺³⁰ -16±16	
D 0	4159.0±4.3±6.6	19.9±12.6 ^{+1.0} -8.0	4328.5±12.0	30 (constrained)	
LHCb	-	-	- \	-	
	>50	>3 σ	N.A.	Not very consis each other.	

Four resonances ?!

$\widehat{\mathcal{L}}$ Resonant structure of $\Upsilon(5S) \rightarrow (b\overline{b})\pi^+\pi^-$

 $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-: J^P$ Results

6D amplitude analysis of decays $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ L values for fits to corresponding models:

$J^P \setminus Mode$	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
1+	0	0	0
1^{-}	64	264	73
2^{+}	41	207	87
2^{-}	59	304	125

Spin parity of both Zb is J^P=1⁺ All other J^P are excluded

BELLE

Υ (5S)→Z_b⁻(10610)π⁺ → BB* π⁺ Z_b⁻(10650)π⁺ → B*B*π⁺

Masses of $Z_{b}(10610)$ and $Z_{b}(10650)$ are close to BB* and B*B* threshold. Search for Y(5S) $\rightarrow Z_{b}\pi$ decay with $Z_{b}\rightarrow B^{(*)}B^{*}$; reconstruct only one B and prompt pion

$\Upsilon(5S) \rightarrow B^*B^{(*)}\pi$: Fit

Fit yields: N(BB π) = 0.3 \pm 14 **N(BB*** π) = 184 \pm 19 (9.3 σ)

 $N(B^*B^*\pi) = 82 \pm 11 (5.7 \sigma)$

21

\Im Υ (5S) \rightarrow B^{*}B^(*) π : Search for Z_b

points – right sign B π combinations (data);

lines – fit to data with various models (times PHSP, convolved with resolution function = Gaussian with σ =6MeV).

hatched histogram – background component

B*B* π candidates are well described by $Z_b(10650)$ only contribution. BB* π can be described by two models: $Z_b(10610) + Z_b(10650);$ $Z_b(10610) +$ non-resonant amplitude.

Z_b branching fractions

Υ(5S) Brs:

BB π < 0.60% (90%CL) BB* π = (4.25 ± 0.44 ± 0.69)% B*B* π = (2.12 ± 0.29 ± 0.36)%

To be compared with PRD 81 (2010) $f(BB^*\pi) = (7.3\pm2.2\pm0.8)\%$ $f(B^*B^*\pi) = (1.0\pm1.4\pm0.4)\%$

arXiv:1209.6450

Assuming Z_b decaying to $\Upsilon(nS) \pi$, $h_b(mP) \pi$ and $B(*)B^*$ only:

Channel		Fraction, %		
		$Z_b(10610)$	$Z_b(10650)$	
$\Upsilon(1S)\pi^+$		0.32 ± 0.09	0.24 ± 0.07	
$\Upsilon(2S)\pi^+$		4.38 ± 1.21	2.40 ± 0.63	
$\Upsilon(3S)\pi^+$	RY	2.15 ± 0.56	1.64 ± 0.40	
$h_b(1P)\pi^+$	- LIMINA.	2.81 ± 1.10	7.43 ± 2.70	
$h_b(2P)\pi^+$	IIE PREL	4.34 ± 2.07	14.8 ± 6.22	
$B^+ \bar{B}^{*0} + \bar{B}^0 B^{*+}$	Ben	86.0 ± 3.6	-	
$B^{*+}\bar{B}^{*0}$		 	73.4 ± 7.0	

B(*)B* channels dominate Z_b decays !

$\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^0 \pi^0$

Υ (1,2,3S) \rightarrow $\mu^+\mu^-$, e⁺e⁻, Υ (2S) \rightarrow Υ (1S) $\pi^+\pi^-$

 $σ[e^+e^- → \Upsilon(5S) → \Upsilon(1S)π^0π^0] = (1.16±0.06±0.10) pb$ $σ[e^+e^- → \Upsilon(5S) → \Upsilon(2S)π^0π^0] = (1.87±0.11±0.23) pb$ $σ[e^+e^- → \Upsilon(5S) → \Upsilon(3S)π^0π^0] = (0.98±0.24±0.19) pb$ Consistent with ½ of Y(nS)π⁺π⁻

Phys. Rev. D 88, 052016 (2013)

If Z_{b}^{0} resonant structure has been observed in $\Upsilon(2S)\pi^{0}\pi^{0}$ and $\Upsilon(3S)\pi^{0}\pi^{0}$

- **I** Statistical significance of $Z_b^0(10610)$ signal is 6.5 σ including systematics
- $\mathbb{Z}_{b}^{0}(10650)$ signal is not significant (~2 σ), not contradicting with its existence
- $\mathbb{Z}_{b}^{0}(10610)$ mass from the fit M=10609 ± 4 ± 4 MeV/c² M(Z_{b}^{+})=10607\pm 2 MeV/c²

Signals of both Z_b^0 are not significant. Data is not contradicting with their existence.

Searches for X_b

Search for the X(3872) counterpart in the bottomonium sector - called here X_b

- Decay channel Y(1S)π⁺π⁻
- Mass predicted close to the BB or BB* threshold. Search scans 10-11 GeV mass range
- Search in two rapidity regions due to different mass resolution
- Dipion mass distribution assumed to be as for Y(2S) and similar to X(3872)
- "R" ratio of observed X_b and Y(2S) candidates corrected for detector efficiency
 - R=6.56% motivated by X(3872) case would yield >5σ observation over the full mass range

No excess observed. 95% CL upper bounds on R within (0.9 - 5.4)%.

 First upper limit on possible X_b state at hadron collider

Summary of this talk

- Low energy QCD is one of the least understood area of the SM.
- B factories have brought many discoveries of new states, especially the quarkonium-like exotics "XYZ".
- More recently, discoveries are extended to the bottomonium region.
- Need more studies to investigate their nature.
- More data are expected from existing Belle data and from Super-KEKB/Belle II.

Stay Tuned !

R_b Measurements

Better statistic errors, but covers a smaller energy range compared to Babar

- R_b is slightly higher by 0.0185
- No Ali's Y_b(10900) (Phys.Lett. B 684, 28-39 2010) Γ_{ee} <36eV