Observation of a DD* structure in $e^+e^- \rightarrow \pi^{\pm}(DD^*)^{\mp} at \sqrt{s} = 4260 MeV$

Xinping Xu^{1,2} S.L. Olsen¹ (BESIII Collaboration) 1.Seoul National University, Korea 2.Soochow University, P.R. China

Outline

Motivation

2013/11/20

• Two independent analysis method: 1)The $\pi^+ D^0$ tagging method: a)Tag D⁰ by the decay D⁰ \rightarrow K⁻ π^+ b)Find an additional π^+ , calculate the recoil mass of $\pi^+ D^0$ and π^+ 2)The $\pi^+ D^-$ tagging method(II): a)Tag D⁻ by the decay D⁻ \rightarrow K⁺ $\pi^{-}\pi^{-}$ b)Find an additional π^+ , calculate the recoil mass of π^+D^- and π^+ • Angular distribution Cross sections • Comparison between Zc(3885) and Zc(3900)

Motivation(I)

- The Belle Collaboration observed two charged structures in
 - $\Upsilon(5S) \rightarrow \pi^+\pi^- \Upsilon(nS), n=1,2,3$
 - $\Upsilon(5S) \rightarrow \pi^+ \pi^- h_b(mP), m=1,2$
- $Z_b(10610)$ and $Z_b(10650)$ near

mass of BB* and B*B*

2013/11/20

2nd XYZ Workshop

Motivation(II)

- BESIII, Belle and Cleo Collaboration discover the new charged structure Zc(3900) in $Y(4260) \rightarrow \pi^+\pi^- J/\psi$.
- The mass of Zc(3900) is near DD* mass, it is very interesting to see whether Zc decays into DD*
 2013/11/20 2nd XYZ Workshop

What is Zc(3900)[±]and Y(4260)?

Molecule ? Tetraquark? Hybrid? Hadro-charmonium ? ISPS model?

Hadronic molecule

2 color-neutral mesons with soft pion exchange

arXiv:1303.6608, arXiv:1304.2882, 1304.1850

Tetraquark

Diquark-antidiquark with gluon exchange

arXiv:1303.6857 arXiv:1304.0345, 1304.1301

2013/11/20

Partial reconstruction technique

We only reconstruct the bachelor pion and a single D.

- If we tag a π^+ and D⁰, we select the events: $\pi^+D^0D^{*-}$ and $\pi^+D^-D^{*0}(D^{*0} \rightarrow \gamma/\pi^0 D^0)$
- If we tag a π^+ and D⁻, we select the events: $\pi^+ D^0 D^{*-} (D^{*-} \rightarrow \pi^0 D^-)$ and $\pi^+ D^- D^{*0} (D^{*0} \rightarrow \gamma/\pi^0 D^0)$
- The events from the isospin decays are cross feeding events.

2013/11/20

Events Selections

- Idea: Tag the single D and bachelor π in πDD*
 Method:
- ➤ Tag D using the decay D⁰ → K⁻π⁺, D⁻ → K⁺π⁻π⁻
 ➤ Finding one or more additional π
- > Finding D* by calculating the recoil mass of $D\pi$ • Kinematic Fit:
- ≻ Constraint the mass: $M(K^{-}\pi^{+})=m_{D0}$, $M(K^{+}\pi^{-}\pi^{-})=m_{D-}$

 Constraint the missing mass of πD: M^{recoil}(π⁺D⁰)=m_{D*-}, M(π⁺D⁻)=m_{D*0}
 γ² <30

Recoil mass of πD

$\pi^+ \mathrm{D}^0$ tagging method

Dots with error bars: Data Solid: $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ Dash: $e^+e^- \rightarrow \pi^+ D^- D^{*0}$, where DD*form a resonance Hatch: Events from D⁰ sideband

π^+D^- tagging method

Dots with error bars: Data

Solid: $e^+e^- \rightarrow \pi^+D^-D^{*0}$

Dash: $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$, where DD*form a reson

Hatch: Events from D⁻ sideband

We can see clear signal of D*

2013/11/20

2nd XYZ Workshop

9

Mass of DD*

Using the function $(x-3.87)^{c}(4.11-x)^{d}$ as the background shape We named the new structure as "Zc(3885)"

2013/11/20

Dalitz Plot

Angular distributions

-consider only lowest partial waves-

JP	L	$dN/d \cos\theta_{\pi} $
1+	S-wave	flat
0-	P-wave	$sin^2 \theta_{\pi}$
1-	P-wave	$1 + \cos^2 \theta_{\pi}$

2013/11/20

$|\cos\theta_{\pi}|$ distributions in four bins

 π^+D^0 tagging method and π^+D^- tagging method Averaged together

We can see the $|\cos\theta_{\pi}|$ distributions for both tagging methods are flat, suggesting the Zc(3885) is a 1⁺ state

2013/11/20

Cross Section Calculations Assuming Isospin symmetry

• For the $\pi^+ D^0$ tagging method, we use

$$\sigma(e^+e^- \to \pi^+ X_c^-) \times \mathcal{B}(X_c^- \to (D\bar{D}^*)^-) = \frac{N(X_c^- \to (DD^*)^-)}{\mathcal{L}(1+\delta)\mathcal{B}(D^0 \to K^-\pi^+)(\epsilon_1+\epsilon_2)/2}$$

 $=(84.6\pm 6.9)$ pb

• For the π -D+ tagging method, we use

$$\sigma(e^+e^- \to \pi^- X_c^+) \times \mathcal{B}(X_c^+ \to (D\bar{D}^*)^+) \\ = \frac{N(X_c^+ \to (DD^*)^+)}{\mathcal{L}(1+\delta)\mathcal{B}(D^+ \to K^-\pi^+\pi^+)[\epsilon_1 + \mathcal{B}(D^{*+} \to \pi^0 D^+)\epsilon_2]/2} \\ = (82.3 \pm 6.3) \text{pb}$$

The cross sections for the two tagging methods are consistent.

2013/11/20

2nd XYZ Workshop

(1)

(2)

Systematical Errors

Source	Mass(MeV)	Width(MeV)	Cross Section(%)
Tracking & PID	/	/	$\pm 4/6$
D mass	/	/	± 1
D^0 & D^+ BFs	/	/	± 1
Kinematic Fit	/	/	± 4
Signal shape	$\pm 1/2$	± 3	± 5
Bg Shape	$\pm 4.0/3.8$	$\pm 10.4/10.7$	± 24
Line shape	/	/	± 0.6
MC efficiency			$\pm 6/3$
Luminosity	/	/	± 1
Rad. Corr.	/	/	± 5
Total	$\pm 4.1/4.3$	$\pm 10.8/11.1$	$\pm 26.4/26.3$

2013/11/20

Are Zc (3885)[±] and $Z_c(3900)^{\pm}$ the same?

Zc(3885) and $Z_c(3900)$ Comparison

	Zc(3885)(MeV)	Zc(3900)(MeV)
Mass	\sim 3883.9 \pm 1.5 \pm 4.2	$3899 \pm 3.6 \pm 4.9$
Width	\sim 24.8 ± 3.3 ± 11.0	$46 \pm 10 \pm 26$
Number of events	502/710	307 ± 48
Production cross section	83.5±6.6±22pb	$13.5 \pm 2.1 \pm 4.8 \text{pb}$

If $Zc(3885)=Zc(3900), \frac{Br(Zc \to DD^*)}{Br(Zc \to \pi J/\psi)} \approx 6.2 \pm 1.1 \pm 2.7$

2013/11/20

Paper submitted (Arxiv:1310.1163)

arXiv.org > hep-ex > arXiv:1310.1163

High Energy Physics - Experiment

Observation of a charged (DD*bar)- mass peak in e+e- --> pi+ (DD*bar)- at Ecm=4.26 GeV

M. Ablikim, M. N. Achasov, O. Albayrak, D. J. Ambrose, for the BESIII Collaboration

(Submitted on 4 Oct 2013 (v1), last revised 8 Oct 2013 (this version, v2))

We report on a study of the process e+e - -> pi+(D D*bar)- at Ecm=4.26 GeV using a 525 /pb data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (DD*bar)- invariant mass distribution. When fitted to a mass-dependent-width Breit-Wigner lineshape, the pole mass and width are determined to be M_pole=(3883.9 +- 1.5 +- 4.2) MeV and Gamma_pole=(24.8 +- 3.3 +- 11.0) MeV. The mass and width of the structure, which we refer to as Z_c(3885), are 2sigma and 1sigma, respectively, below those of the Z_c(3900) --> pi+J/psi peak observed by BESIII and Belle in pi+pi-J/psi final states produced at the same center-of-mass energy. The angular distribution of the pi Z_c(3885) system favors a JP=1+ quantum number assignment for the structure and disfavors 1- or 0-. The Born cross section times the DD*bar branching fraction of the Z_(3885) is measured to be sigma(e+e- --> pi+Z_c(3885)--> DD*bar)=(83.5 +-6.6 +- 22.0) pb. Assuming the Z_c(3885) --> DD*bar signal reported here and the Z_c(3900) --> pi J/psi signal are from the same source, the partial width ratio Gamma(Z_c(3885) --> DD*bar)/Gamma(Z_c(3900) --> pi J/psi)=6.2 +- 1.1 +- 2.7 is determined.

Comments: 7 pages, 3 figures and 3 tables, submitted for publication in Physical Review Letters, references added Subjects: High Energy Physics - Experiment (hep-ex) Cite as: arXiv:1310.1163 [hep-ex] (or arXiv:1310.1163v2 [hep-ex] for this version)

Submission history

From: Stephen L. Olsen [view email] [v1] Fri, 4 Oct 2013 04:36:05 GMT (516kb) [v2] Tue, 8 Oct 2013 02:26:58 GMT (516kb)

2013/11/20

2nd XYZ Workshop

17

Search o

Comments from PRL referees

All three referees recommend for publication in PRL LK13824/Ablikim

The paper is well written and the analysis is sound and well-done. The results shown in the paper are very important. I suggest to publish (Phys. Rev. Lett.) this paper draft as soon as possible.

The observation is a key measurement towards the understanding of exotic bound states, and the publication will likely generate a lot of interest, as well as trigger future experimental and theoretical work. Therefore I recommend publication in PRL.

This paper reports a significant new result and definitely merits publication in PRL. Some comments and suggestions for improvement follow.

2013/11/20

Current status of the paper

- We prepared the revised manuscript and reply to comments.
- The paper will be resubmitted soon.

Thanks

2013/11/20

2nd XYZ Workshop

20