The nature of Y(4260) and production of $Z_c(3900)$

Qian Wang

Forschungszentrum Jülich

Huangshan, China November 19th–22th, 2013

In collaboration with

M. Cleven, F. K. Guo, C. Hanhart, U. G. Meißner, X. G. Wu and Q. Zhao

Outline

- A brief review of X, Y, Z particles
 - The theoretical aspect
 - The experimental aspect
- Some scenarios of Y(4260)
 - hybrid
 - hadro-charmonium
 - tetraquark
 - molecule

Þ ...

- ► The molecular nature of Y(4260) and its manifestation
 - The singularity region
 - The production of $Z_c(3900)$
 - The line shape of Y(4260)
- Summary and Outlook

Quark model predicts

Baryon, e.g. n, p

Meson, e.g. π , ρ

Other color singlet exotic configurations are also permitted by QCD: hybrid

glueball

hadroquarknoium

4/27

tetraquark

See talk by Feng-Kun Guo

molecule

Q.Wang

Y(4260) and Z_c(3900)

Conventional charmonia

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

Q.Wang Y(4260) and $Z_c(3900)$

Well-established exotic states

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

Q.Wang Y(4260) and $Z_c(3900)$

Some unconfirmed exotic states

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

The DD, DD^* , D^*D^* thresholds

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

Q.Wang Y(4260) and $Z_c(3900)$

The $D_s D_s$, $D_s D_s^*$, $D_s^* D_s^*$ thresholds

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

Q.Wang Y(4260) and $Z_c(3900)$

The D_1D , D_1D^* , D_2D^* thresholds

e⁺e⁻ annihilation: BESIII, Belle, CLEO, BABAR; B decay: Belle, BABAR; Hadron collider: Tevatron, LHC

Q.Wang Y(4260) and $Z_c(3900)$

A brief review of X, Y, Z particles $Z_b(10610)$ and $Z_b(10650)$

Figure : The $\Upsilon(nS)\pi$ invariant mass in $\Upsilon(5S) \to \Upsilon(nS)\pi\pi$ processes.

Figure : The missing pion mass distribution in $\Upsilon(5S) \rightarrow h_b(mP)\pi\pi$ processes.

Belle, Phys.Rev.Lett. 108, 122001(2012); Belle, hep-ex/1209.6450(2012), talk by Cheng-ping Shen.

Q.Wang Y(4260) and Z_c(3900)

A brief review of X, Y, Z particles Z_b(10610) and Z_b(10650)

074006(2013); talk given by W.Wang on QWG2013

Branching ratio (%)	Z _b (10610)	$Z_b'(10650)$
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	4.34 ± 2.07	14.82 ± 6.22
$B^+\bar{B}^{*0}+\bar{B}^0B^{*+}$	86.0 ± 3.6	-
$B^{*+}\bar{B}^{*0}$	-	73.4 ± 7.0

Belle, Phys.Rev.Lett. 108, 122001(2012); Belle, hep-ex/1209.6450(2012); M.Cleven et al, Phys.Rev.D87,

A brief review of X, Y, Z particles *Z_c*(3900)

Consistent with each other!

BESIII, Phys.Rev.Lett., 110, 252001(2013); Belle, Phys.Rev.Lett., 110, 252002(2013); See talk by Zhi-ging Liu.

Q.Wang Y(4260) and Z_c(3900)

A brief review of X, Y, Z particles $Z_c(4020)$ and $Z_c(4025)$

One state or two states?

BESIII, hep-ex/1309.1896(2013); BESIII, hep-ex/1308.2760(2013); See talks by Xiao-Rui Lu and Yu-ping Guo.

A brief review of X, Y, Z particles *Y*(4260)

No signals in both R-Value measurement and open charmed channels.

Only well established in $J/\psi \pi \pi$ channel and some hint in $h_c \pi \pi$ channel.

Talk given by Galina Pakhlova on QWG 2011; Talk given by Chang-zheng Yuan on Charm 2013; BESIII arXiv:1309.1896 [hep-ex].

Some scenarios of Y(4260)

Configurations, dominant decay modes and behaviours in e^+e^- annihilation

hybrid $(c\bar{c})_{0^{-+}} + q_{1^{+-}}$ η_c +light mesons suppressed

S. -L. Zhu, Phys. Lett. B 625, 212 (2005); E. Kou and

O. Pene, Phys. Lett. B 631, 164 (2005); F. E. Close and

P. R. Page, Phys. Lett. B 628, 215 (2005), talk by Ying

Chen.

hadro-charmonium $(c\bar{c})_{1--}$ + light mesons $J/\psi + 2\pi$ enhanced

M. B. Voloshin, Phys. Rev. D 87, 091501 (2013),

N. Mahajan, arXiv:1304.1301 [hep-ph].

tetraquark $([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})_{P-wave}$ $D_{c}^{*}D_{c}^{*}$ suppressed

L. Majani, V. Riguer, F. Piccinini and A. D. Polosa, Phys.

Rev. D 72, 031502 (2005), talk by Ting-Wai Chiu.

molecule $D_1 \overline{D} - \overline{D}_1 D$ $D\bar{D}^*\pi + c.c.$ suppressed

16/27

Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111.

132003 (2013), G. -J. Ding, Phys. Rev. D 79, 014001

(2009).

The molecular nature of Y(4260) and its manifestation The singularity region

No matter what natures they are, the threshold effect does exist!

We use the lagrangians below to express the incoming vector meson coupling to $D_1 D$ and $D_1 D^*$

$$\mathcal{L}_{Y} = iy(\underline{D}_{a}^{\dagger}Y^{j}\overline{D}_{1a}^{\dagger j} - D_{1a}^{\dagger i}Y^{j}\overline{D}_{a}^{\dagger}) + y\epsilon^{jk}(D_{1a}^{\dagger i}Y^{k}\overline{D}_{a}^{\dagger j} - D_{a}^{\dagger j}Y^{k}\overline{D}_{1a}^{\dagger j}) + H.c. \qquad x \xrightarrow{D_{b}} \sum_{D} \sum$$

Since the charmed meson exchanged between J/ψ and π is far off-shell, the amplitude can be analyzed as

$$\begin{split} \mathcal{M} &= \int \frac{d^4 I}{(2\pi)^4} \frac{G \epsilon_X^i \epsilon_{J/\psi}^j (3q_1^i q_1^j - |q_1|^2 \delta^{ij}) \mathcal{F}(M(J/\psi\pi), t)}{(l^0 - \frac{|\tilde{l}|^2}{2m_{D_1}} + i\varepsilon) (p^0 - l^0 - \frac{|\tilde{l}|^2}{2m_{D}(*)} + i\varepsilon) (l^0 - q_1^0 - \frac{|\tilde{l} - \tilde{q_1}|}{2m_{D^*}} + i\varepsilon)} \\ &\equiv \quad G \epsilon_X^i \epsilon_{J/\psi}^j (3q_1^i q_1^j - |q_1|^2 \delta^{ij}) \mathcal{F}(M(J/\psi\pi), t) I(m_{D_1}, m_{D^{(*)}}, m_{D^*}, W, M(J/\psi\pi), m_{\pi}) \,, \end{split}$$

Q. Wang, C. Hanhart and Q. Zhao, Phys. Lett. B 725, (2013)

and

Y(4260) and $Z_{c}(3900)$

The molecular nature of Y(4260) and its manifestation The singularity region

The singularity region

The corresponding line shape at the centre energy 4.43 GeV

The molecular nature of Y(4260) and its manifestation The production of $Z_c(3900)$

Y(4260) lies in DD* singularity region:

- The large production rate of DD* at 4.26 GeV since it lies in the DD* singularity region
- Box diagrams provides most of back ground contributions
- The dip at about 1 GeV is shifted above $K\bar{K}$ threshold due to other higher partial waves' contribution
- The explicit inclusion of Z_c(3900) pole contribution makes the structure at DD* threshold broader
- Y(4260) should be dominated by D₁ D component
- DD* \u03c6 is largely affected by the nearby D1D threshold

Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013)

The molecular nature of Y(4260) and its manifestation The line shape of Y(4260)

The propagator of Y(4260) can be expressed as

$$G_{Y}(s) = (s - M_{0}^{2} + g_{0}^{2}\Pi(s))^{-1} = Z(s - M_{Y}^{2} + g^{2}\hat{\Pi}(s))^{-1}, \qquad (1)$$

where the mass position is defined as

$$M_Y^2 - M_0^2 + g_0^2 Re[\Pi(M_Y^2)] = 0$$
⁽²⁾

and

$$\hat{\Pi}(s) = \Pi(s) - \operatorname{Re}\left[\Pi(M_Y^2) + (s - M_Y^2)\partial_s \Pi(s)\right]_{s = M_Y^2}\right]$$

Here $Z = (1 - Re[\Pi'(M_V^2)])^{-1}$ is the renormalized constant and $g^2 = g_0^2 Z = \frac{16\pi}{\mu} \sqrt{\frac{2\epsilon}{\mu}}$ is the physical coupling constant. To take into account the other possible decay modes without through $D_1 D$ component, a constant width Γ_Y is added to the propagator. So the full propagator is

$$G_{Y}(s) = \left[s - M_{Y}^{2} + g^{2}\hat{\Pi}(s) + iM_{Y}\Gamma_{Y}\right]^{-1}.$$

The cross section of the full process $e^+e^-
ightarrow Y
ightarrow f$ can be expressed as

$$\sigma(s) = (4\pi\alpha)^2 \left(g_{\gamma^* Y} \frac{M_Y^2}{s}\right)^2 (M_Y \Gamma_{Y \to f}) |G_Y(s)|^2.$$
(3)

M. Cleven, Q. Wang, F. -K. Guo, C. Hanhart, U. -G. Meißner and Q. Zhao, arXiv:1310.2190 [hep-ph].

The molecular nature of Y(4260) and its manifestation The line shape of Y(4260)

To get the mass position of Y(4260), we fit its line shape in $J/\psi \pi \pi$ and $h_c \pi \pi$ channels. The fitted results are $M_Y = (4220 \pm 5) \text{ MeV}$ and $\Gamma_Y = (40 \pm 9) \text{ MeV}$. The corresponding line shapes are as below

M. Cleven, Q. Wang, F. -K. Guo, C. Hanhart, U. -G. Meißner and Q. Zhao, arXiv:1310.2190 [hep-ph].

The molecular nature of Y(4260) and its manifestation The line shape of Y(4260)

 $e^+e^-
ightarrow Y$ (4260) $ightarrow DD^*\pi$

Feynman Diagrams

- The nontrivial structures of the line shape of Y(4260) at the $D_1 D$ threshold in the $J/\psi \pi \pi$, $h_c \pi \pi$ channels can be viewed as an evidence that Y(4260) is dominated by the $D_1 D$ component.
- The threshold effect in $DD^*\pi$ channel is not as significant as that in the $J/\psi\pi\pi$ and $h_c\pi\pi$ channels since it is dominated by the tree diagram.
- The fitted mass of Y(4260) is (4220 ± 5) MeV which is a little lower than the PDG averaged value.
- That the constant width is smaller than half of the total width is an evidence that Y(4260) is dominated by D₁D.

M. Cleven, Q. Wang, F. -K. Guo, C. Hanhart, U. -G. Meißner and Q. Zhao, arXiv:1310.2190 [hep-ph].

The molecular nature of Y(4260) and its manifestation The line shape of Y(4260)

The $D\pi$, $D^*\pi$ and DD^* invariant mass distributions

- The D₁ pole contribution in D* π invariant mass can be viewed as another evidence that Y(4260) is D₁D molecule.
- The enhancement at higher mass in $D\pi$ invariant mass are due to the relative D-wave behavior of $D^*\pi$ in D_1 decay.
- The enhancement at lower mass of DD* is due to the relative S-wave behavior
- M. Cleven, Q. Wang, F. -K. Guo, C. Hanhart, U. -G. Meißner and Q. Zhao, arXiv:1310.2190 [hep-ph],
- X. -H. Liu and G. Li, Phys. Rev. D 88, 014013 (2013).

DD* invariant distribution compare to experiment

See talks by Xin-Ping Xu and Xiao-Rui Lu.

Summary and Outlook

- Y(4260) is dominated by $D_1 D$ component and its dominant decay mode should be $DD^* \pi$.
- The line shape of Y(4260) is largely dependent on the nearby $D_1 D$ threshold in the $J/\psi \pi \pi$ and $h_c \pi \pi$ channels.
- The fitted mass is (4220 \pm 5) MeV which is a little lower than the PDG average.
- Further measurements in η_c + light mesons and $D_s^s D_s^s$ channels are necessary to probe Y(4260)'s nature.
- D₁ pole contribution in D* π invariant mass can be viewed as evidence for Y(4260)'s being as a D₁D molecule.
- The combination of the light degrees of freedom (³/₂)⁺ and (¹/₂)⁻ can not give 0 which makes the production of Y(4260) is suppressed in e⁺e⁻ annihilation.
- The observation of $Z_c(3900)$ is a natural result of Y(4260)'s molecular nature.
- Further scans at different c.m. energies especially out of the singularity region are necessary to determine whether Z_c(3900) is a genuine state or not.

Thanks for your attention

BackUp

