The HL-LHC physics program

Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations

Workshop on Future High Energy Circular Colliders Beijing, 16-17, December, 2013

Contents

- LHC operation schedule
- Challenges at High Luminosity LHC (HL-LHC) and detector upgrade plans
- Physics prospects for HL-LHC
 - Higgs properties and couplings
 - Higgs self-coupling
 - Searches for SUSY
 - Rare processes

The Large Hadron Collider (LHC)

- Circumference: 27 km
- Design values
 - $\sqrt{s} = 14 \text{ TeV}$
 - $\dot{L}=2 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

LHC roadmap

High Luminosity LHC

HL-LHC conditions

- Increased LHC instantaneous luminosity
- Large number of pileup events (μ) in the same bunch crossing
- → Luminosity leveling at $L = 5 \times 10^{34}$ (cm⁻²s⁻¹) with $\langle \mu \rangle = 140$

	Peak L (cm ⁻² s ⁻¹)
Until 2012	7×10^{33}
After Phase-1 upgrade	2.5×10^{34}
After Phase-2 upgrade	2×10^{35} (*)

^(*) Maximum peak luminosity achievable by the machine

- ATLAS and CMS detectors must be upgraded to cope with high pileup condition
- Inner trackers must be replaced due to radiation damage
- Need new detectors (both hardware and software) to keep similar performance as now

ATLAS detector upgrade plans

Phase-0

- Insertable B-layer (IBL)
- L1 topological trigger
- Fast Track Trigger (FTK)

Phase-1

- High granularity at L1 calorimeter trigger
- New small wheel for L1 endcap muon trigger

Phase-2

- New silicon tracker (ITK)
- L0/L1 trigger scheme (500/100 kHz)

Work on detector consolidation is ongoing: cooling, power supply, electronic, etc.

CMS detector upgrade plans

Phase-0

- 4th muon endcap station
- Detector consolidation

Phase-1

- New L1 trigger system
- New pixel detector
- HCAL upgrade (photo-detector and electronics)

Phase-2

- Details to be defined in Technical Proposal (2014)
- New tracker with L1 track trigger capability (pT>2.5 GeV)
- DAQ/HLT upgrade to have 1 MHz at L1 and 10 kHz recording rate
- Replace endcap & forward calorimeters
- Possible extension of muon coverage
- Possible EM preshower system to have photon pointing

7

Trigger track selection in FE

Detector performance for HL-LHC physics studies

ATLAS

- Parameterize the detector response based on GEANT4 full simulation
 - The simulation includes the currently proposed layout of the upgraded tracker
- $\langle \mu \rangle = 140 \ (\langle \mu \rangle = 50)$ is assumed for 3,000 fb⁻¹ (300 fb⁻¹)
- CMS
 - Studies scale current analysis
 - Assumes detector upgrades maintain current performance
 - Fast detector simulation using DELPHES
 - Cross checked with full simulation in some cases

Detector performance (1)

- CMS muon p_T resolution comparison between full simulation and DELPHES fast simulation
- Good agreement is observed

- Parameterization of ATLAS muon p_T resolution based on full simulation
- Better performance is obtained with ITK than with the current ID

Detector performance (2)

ATLAS-PUB-2013-009

Parameterization of E_T^{miss} resolution <u>b-tagging</u>

- 70% efficiency as a typical working point
- 0.05% mis-tag rate at $\langle \mu \rangle = 140$

b-tagging efficiency

Physics after the Higgs discovery

- Measurements of properties and couplings of the Higgs boson
 - Couplings to various particles including rare decay modes
 - Natural width (very difficult, $\Gamma_H = 4.2 \text{ MeV}$)
 - BSM Higgs search
- Investigation of Electroweak symmetry breaking (EWSB)
 - Higgs self-coupling measurement
 - Vector boson scattering
- Searches for physics beyond the SM
 - Strong motivation due to the evidence of dark matter from cosmology
 - Supersymmetry (SUSY)
 - Rare decays

12

Higgs results in LHC Run-1

- A resonance is observed in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ decay modes
- Mass: $126.0 \pm 0.4(stat) \pm 0.4(sys)$ GeV (ATLAS), $125.3 \pm 0.4(stat) \pm 0.5(sys)$ (CMS)
- Spin/parity of 0⁺ is strongly favored
- Constraints on the signal strength in various final states
 - \rightarrow Constraints on the couplings

Latest results on Higgs signal strength

$H \rightarrow ZZ^{(*)}$ channel with 3,000 fb⁻¹

CMS-PAS-FTR-13-003

• Red histogram shows the distribution with wider η acceptance ($|\eta| < 4$)

ATLAS-PUB-2013-014

 $H \rightarrow ZZ^{(*)}$ can be observed in the $t\bar{t}H$ production mode with 3,000 fb⁻¹

$H \rightarrow WW^{(*)}$ channel with 300 and 3,000 fb⁻¹

- Feasibility was studied by extrapolating the study for 8 TeV to 14 TeV, using smearing functions
- The background ($t\bar{t}$ and WW) increases in 3,000 fb⁻¹ due to the higher pileup
- Measurement of $H \rightarrow WW^{(*)}$ is still possible

16

$H \rightarrow \mu\mu$ channel

- Direct verification of the Higgs coupling to 2nd generation leptons
- ATLAS (CMS) expects $>6\sigma$ ($>5\sigma$) significance
- Coupling measurement with 10-20% precision

$H \rightarrow Z\gamma$ channel

 Large background due to radiative Z decay but the measurement is possible

Channel	$ee\gamma$ inclusive	$\mu\mu\gamma$ inclusive	eeγ VBF	$\mu\mu\gamma$ VBF
S	1465	1667	21.5	23.2
В	$4.05 \cdot 10^{5}$	$4.84 \cdot 10^{5}$	609	726
S/B (%)	0.36	0.35	3.5	3.3
VBF/(VBF+ggF)	0.09	0.09	0.55	0.55

Coupling measurement

- Fit the scale factors (κ_i) for the couplings with respect to their SM value
 - Width (Γ_i) scales with κ_i^2

$$\sigma \cdot B \left(i \to H \to f \right) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

• Measure ratios of coupling scale factors which are independent of the total width

Constraints on the universal fermion (boson) coupling scale factor C_F (C_V)

ATLAS-PUB-2013-009

Summary of the coupling measurement

ATLAS-PUB-2013-009

HZZ vertex structure

- In a general expression, the HZZ vertex may contain CP-even (CP-odd) terms with coefficients g_2 (g_4)
- Set constraints using the angular distribution of the decay products of Z bosons
- Large improvement with 3,000 fb⁻¹

20

Measurement of the total width

- The natural width of Higgs particle is $\Gamma_H = 4.2 \text{ MeV}$
 - Much smaller than detector resolution
- There is an interference of signal and background amplitudes in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
 - Shifts the mass peak to lower value

L. J. Dixon, Y. Li, PRL 111 (2013) 111802

21

Higgs width from $H \rightarrow \gamma \gamma$

ATLAS-PUB-2013-009

- Mass shifts for $\Gamma_H = 1 \times \Gamma_H^{SM}$ and $\Gamma_H = 200 \times \Gamma_H^{SM}$
 - A 95% C.L. upper limit can be set
 - $220 \times \Gamma_H^{SM}$ with 300 fb⁻¹
 - $40 \times \Gamma_{H}^{SM} \sim 160$ MeV with 3,000 fb⁻¹
- Current limit by CMS: 6.9 GeV (without using the interference technique)

Two Higgs Double Model (2HDM)

- 2HDM introduces 5 physical Higgs particles (h, H, H^{\pm}, A)
- Search for heavy Higgs bosons in decay modes: $H \rightarrow ZZ$ or $A \rightarrow Zh$
 - Performed by ATLAS & CMS for Type I-IV models

 $H \to ZZ \to 4l$

- Derive the limit on $\sigma \cdot Br$ for each m_H
- Exclude the parameter region if $\sigma \cdot Br$ is excluded
- Exclusion limit set for 200 GeV $< m_H < 1$ TeV

ATLAS-PUB-2013-016 CMS-PAS-FTR-13-024

Higgs self-coupling measurement

- In order to determine the parameters of the SM completely, a measurement of the Higgs self-coupling is essential
 - Higgs potential and the EWSB mechanism
- Measurement of double Higgs production
- Destructive interference between diagrams with triple Higgs coupling and other diagrams

	σ_{HH} (fb)
$\lambda = 0$	71
$\lambda = \lambda_{SM}$	34
$\lambda = 2 \cdot \lambda_{SM}$	16

Double Higgs production yields

Event yields of various channels

	Decay channel	Branching ratio (%)	Yield with 3 ab ⁻¹	
	$b\overline{b}b\overline{b}$	33.4	34,000	
	$b\overline{b}W^+W^-$	25.0	25,500	
	$b\overline{b} au au$	7.36	7,500	
	$W^+W^-W^+W^-$	4.66	4,750	
	$b \overline{b} Z Z$	3.09	3,150	
	ZZW^+W^-	1.15	1,170	
	$b \overline{b} \gamma \gamma$	0.26	265	

- Very challenging due to low yield and contributions from irreducible backgrounds ($t\bar{t}H,ZH$, etc.)
- Ongoing studies suggest some sensitivity to constrain the triple Higgs coupling
- Also, several phenomenological papers suggest this possibility

Vector boson scattering

- Vector boson ($V = W^{\pm}, Z, \gamma$) scattering involves:
 - Triple gauge couplings
 - Quadratic gauge coupling
 - Higgs boson propagator in s- and/or t-channel
- The interference of all contributions \rightarrow unitarity
- Deviation of VVH coupling from the SM value
 - \rightarrow violates unitarity
- Higher dimensional operators
 - → new physics

Entries

mu+ mumu+

ATLAS-PUB-2013-006 CMS-PAS-FTR-13-006

SUSY Search

28

SUSY search at HL-LHC

- Limits set by Run-1 LHC: $m_{\tilde{q}} < 0.7$ TeV, $m_{\tilde{g}} < 1.3$ TeV
- Less stringent limits on sleptons, 3rd generation squark, weak gauginos
 - \rightarrow Accessible at HL-LHC

Weak gaugino production (1)

- Direct production of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$
- Signature:
 - 3 leptons (>10 GeV)
 - $E_T^{miss} > 50 \text{ GeV}$
 - b-jet veto

Excluded chargino mass (for massless LSP) is increased by 300 GeV by going from 300 fb⁻¹ to 3,000 fb⁻¹

30

Weak gaugino production (2)

- 5σ exclusion region from CMS
 - Extend the mass range up to 700 GeV with 3,000 fb⁻¹
- Assuming 100% or 50% branching ratios of $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$

Stop pair production

Signature:

- Fully hadronic top decay:
 - 0-lepton, >6 jets with 2 *b*-tagged, E_T^{miss}
- Semi-leptonic top decay:
 - 1-lepton, >4 jets with 1 *b*-tagged, E_T^{miss}

 5σ discovery up to 1.2 TeV at 3,000 fb⁻¹ (200 GeV gain from 300 fb⁻¹)

31

Gluino production

- Large production cross section
- Gluino masses up to 2.2 (1.8) TeV and LSP mass up to 500 (400) GeV can be discovered with 3,000 (300) fb⁻¹

$$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$$
: Multijet, E_T^{miss}

- In case gluino decays preferentially to top
 - $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$: Multijet, E_T^{miss} , 1-lepton

- $Br(t \rightarrow Wb) \sim 100\%$ in SM
- Flavor changing neutral current (FCNC) decay is highly suppressed
 - $Br(t \to Zq) \sim 10^{-14} (SM)$
 - $Br(t \rightarrow cH) \sim 3 \times 10^{-17} (SM)$
- Search for or llq or $c\gamma\gamma$ final states
- ATLAS & CMS studies show sensitivity of 10⁻⁴ can be achieved in these channels with 3,000 fb⁻¹
 - Predicted by several extensions of SM (2HDM, RPV SUSY etc.)

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1\cdot 10^{-4}$			$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$		10^{-5}
$t \to c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1\cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

1.5

2.5

Br(t \rightarrow cH) (x10⁴)

Conclusion

- There is a well-defined LHC roadmap including the High Luminosity LHC
- Detector upgrade R&D is in progress
 - Expect to have similar performance as the current detector even with higher pileup
- Many measurements are possible at HL-LHC
 - Higgs coupling to various particles
 - Natural width
 - Sensitivity to Higgs self-coupling
 - Vector boson scattering
 - Extension of search region for SUSY particles
 - Measurements of rare processes

Backup slides