Higgs Measurement at CEPC & its detector

Manqi, RUAN

IHEP, Beijing

CEPC Training - I @ IHEP

SM Lagrangian

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
(U(1), SU(2) and SU(3) gauge term
 $+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$ (lepton dynamical term)
 $-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right]$ (electron, muon, tauon mass term)
 $-\frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ (neutrino mass term)
 $+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$ (quark dynamical term)
 $-\frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right]$ (down, strange, bottom mass term)
 $-\frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ (up, charmed, top mass term)
 $+ \overline{(D_\mu \phi)} D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$

(1)

SU(3) gauge terms)

term)

mass term)

and mass term)

Higgs

- 9 fermion masses (+ 3 m_v)
- ◆ 3 CKM mixing angles + 1 phase (+ 3+1 for $m_v \neq 0$)
- + 1 electromagnetic coupling constant α
- 1 strong coupling constant α_s
- 1 weak coupling constant $G_F = 1.16637(1) \times 10^{-5} \, GeV^{-2}$
- 1 Z⁰ mass m_Z = 91.1876(21) GeV/c²

1 Higgs mass

Only scalar particle in SM

Most free SM parameters

MANY theoretical difficulties

CEPC Training - I @ IHEP

Higgs, the focus, the gate

The KEY: e⁺e⁻ Higgs factory

Figure 2: Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs boson couplings. The plot shows (from left to right in each set of error bars) 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹, for ILC at 250 GeV and 250 fb⁻¹ ('ILC1'), for the full ILC program up to 500 GeV with 500 fb⁻¹ ('ILC2'), and for a program with 1000 fb⁻¹ for an upgraded ILC at 1 TeV ('ILCTeV'). The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

Bb: 58%; WW, 21%; gg, 9%; тт, 6%; cc, 3%; ZZ + others, 3%

$$\frac{g_{HXX}}{g_{HXX}^{SM}} \approx 1 + \delta \times \left(\frac{1 \text{ TeV}}{\Lambda_{NP}}\right)^2$$

LHC: high productivity, no tagging signal, huge backgrounds & systematics.

Ultimate precision in Higgs coupling limited to ~ 10 - 20%

e⁺e⁻ machine: low background – triggerless mode, precisely known/adjustable initial state, allowance of model independent measurement...

a precise Higgs factory must be a lepton machine (ILC, LEP3, TLEP..., CEPC)

Higgs factory: Linear or Circular

	Linear: ILC, CLIC	Circular: CEPC, TLEP
Pro	Center of mass energy can be upgraded to 1-3 TeV Longitudinal polarized beam Power pulsed detector	Cost-efficient, mature technology Multiple interaction point High luminosity & beam quality
Con	Expensive (\sim 8 – 10 B euros) Single interaction point, might need push-pull	Center of mass energy limited in e ⁺ e ⁻ phase (but can be upgraded to ~ 100 TeV in pp phase) No beam polarization at high energy No power pulse

19/10/2013

Muon & photon colliders are also possible Higgs factories, but... 6

CEPC

- Circular machine with total length 50-70 km
- Luminosity: 10^{34} cm⁻²s⁻¹ \sim 100fb⁻¹/y at 1 IP
- Site power: ~ o(100) MW
- High beam quality: beam energy spread, low beamstrahlung...
- State of Art

Higgs productivity at e⁺e⁻ machine

 σ (HZ, 240 GeV) ~ 200fb with non-polarized beam L $\sim 10^{34}$ cm⁻²s⁻¹ ~ 100 fb⁻¹/y : Nominal luminosity 500fb⁻¹ ~ 10⁵ Higgs/IP Benchmark: 100 k Higgs, but can be (largely) increased

Beam polarization can enhance the Higgs productivity by ~ 50% at ILC, and reduce the SM Background at the same time. However, it's not crucial for Higgs measurement 8

CEPC: 8 + 2 measurements for SM higgs

- Mass, spin, total cross section
- Branching ratios (b, c, tau, g, W)
- Branching ratios (gamma, mu)
- Calculate: width coupling
- Other measurements, SM & exotics...

Mode	$b\overline{b}$	$c\overline{c}$	gg	WW^*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$\mathrm{Z}\gamma$
BR (%)	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16
	g(Hbb), g(Hcc), g(Htt), g(HWW)/Г _н , g(Hµµ				, g(Hµµ),	g(Нтт),	g(HZZ)/Г	_H , g(HWW))/g(Htt)

ZH event: requirement on detector and critical algorithms

PFA Oriented LC detectors

- PFA: Jet energy resolution
 less confusion ~ good separation ~ high granularity
 Granularity > Energy Resolution for the Calorimetry...
- PFA Oriented detector (both have ILC/CLIC Versions):
 - ILD (European + Asia, International Large Detector): TPC (+ Silicon inner detectors) tracking with B = 3.5T
 - SiD (US, Silicon Detector): Silicon tracking with B = 5T

Reference detector for CEPC: ILD

Vertex detector

Inner most layer Radius: ~15 mm Spatial resolution: ~ 5 μm

ILD Detector: dismount Yoke, Coil and partial of the Calo

6.6

Silicon Tracking at ILD

 Massive usage of silicon pixel/strips in the tracking system & VTX: ensures good accuracy in Impact parameter & momentum measurement

ILD Main Tracker: TPC

Figure III-2.11. Left: Drawing of the proposed end-plate for the TPC. In the insert a backframe which is supporting the actual readout module, is shown. Right: Conceptual sketch of the TPC system showing the main parts of the TPC (not to scale).

PFA Oriented Calorimeter

Development of micro electronics: ultra-high granularity! #channels, 10⁴-10⁵ (CMS) → 10⁸ channels (I/LC calorimeters) Imaging calorimeter in 8-D (or even 5-D) in/a high DAQ rate... Role of calorimeter Measure the incident energy

Identify and measure each incident particles with sufficient energy

10cm

DRUID, RunNum = 0, EventNum = 23

20 GeV Klong reconstructed @ ILD Calo

Calorimeter R&D for ILD

Ultra high granularity ~ 1 channel cm⁻³. 3d, 4d or 5d image...

19/10/2013

CEPC Training - I @ IHEP

ILD Performance

Flavor tagging: eff = 80%, purity > 90% for b-tagging (Impact parameter resolution ~ 5 μ m) Algorithm: LCFIPlus, Tokyo University (Tomohiko Tanabe)

Tracking: $\delta(1/P_{T}) \sim 2-5*10^{-5}(1/GeV)$ Algorithm: Clupatra, DESY (Frank Gaede); KalTest, KEK (Keisuke Fujii), etc

PFA : δEJ/E = 3 - 4% Algorithm: PandoraPFA, Cambridge (Mark Thomson); Arbor, LLR & IHEP(Manqi, Henri)

19/10/2013

CEPC Training - I @ IHEP

Higgs Measurement: Physics Analysis

19/10/2013

Main background: WW, ZZ, qq/II, Single W, Single Z...

19

All 4-fermion back grounds

Туре	ID	LL (n)	LR (n+1)	RL (n + 3)	RR (n+2)	non-pol	Final states
sw_l	6585-88	40	3335	29.1	40	861	v _e ev _l I (I:µ,т)
sw_sl	6563-66	119.7	10000	85.6	119.3	2581.2	v _e eUD
sze_l	6555-58	1009.6	1084.1	1019.5	1008.4	1030.4	eell(l:μ,τ) eev _i v _i
sze_sl	6559-62	259.8	459.1	316.5	259.0	323.6	eeUU, DD
szeorsw_l	6567-70	27.7	922.1	21.6	27.6	249.8	eev _e v _e
sznu_l	6589(lr)- 90		192.8	39.3		58.0	v _e v _e II, (I:µ,т)
sznu_sl	6571-72		456.8	130.8		146.9	$v_e v_e UU, DD$
ww_h	6551-52		14874.3	136.4		3752.7	
ww_l	6581-82		1564.2	14.7		394.7	ν _μ μν _τ τ
ww_sl	6577-78		18781.0	172.7		4738.4	UDv _I I (I:µ,т)
zz_h	6573-74		1402.1	605.0		501.8	
zz_l	6579-80		158.0	99.5		64.4	2l2l (l:µ,т) 2l'2v _l ,
zz_sl	6575-76		1422.1	713.5		533.9	
zzorww_h	<mark>6553-54</mark>		12383.3	224.8		3152.0	
zzorww_l	6721-22		1636.0	54.0		422.5	2l2v _I (I:µ,т)

Xsec/fb	LL	LR	RL	RR	Non-pola/evts at 500 fb ⁻¹
ww_h		14874	136.4		3752 fb ~ 1.87 M
zz_h		1402	604		502 fb ~ 250 k
zzorww_h		12383	225		3152 fb ~ 1.58 M

Signal, ZH with Z to qq and Higgs to qq or gg ~ 48.6 k

CEPC Training - I @ IHEP

Background & Analysis: general remark

- Without any selection, the statistic total background is roughly 2 orders higher than Signal
 - Dominated by WW
 - ZZ, irreducible background ~ 5 times larger than ZH
- Event Selection should reduce the background to the same order of magnitude as the Signal
 - Tagging different final state: lepton ID & Flavor tagging
 - Kinematic selection: rely on PFA
- Good statistic:
 - Detector should be efficiency oriented

ZH, Z \rightarrow 2I (I = ee, µµ), H \rightarrow X

ZH, $Z \rightarrow 2q$, $H \rightarrow X$

ZH, Z \rightarrow 2v, H \rightarrow X

ZH, Z \rightarrow 2q, H \rightarrow 2q

Another P.o.V: algorithm

Br(H→WW, ZZ) ~ Width Measurement

Tag H→WW* event

Leptonic decay of W: Missing Energy/Momentum

From ILD to CEPC detector

- Many new designs
 - Changed granularity (no power pulsing)
 - Changed L*
 - Changed VTX inner radius
 - Changed TPC outer Radius
 - Changed Detector Half Z
 - Changed Yoke/Muon thickness
 - Changed Sub detector design

- ...

 All Changes need to be implemented into simulation, iterate with physics analysis (Fast – Full Simulation) and cost estimation

Design new geometry

Detector optimization: Basic ingredients

CEPC Training - I @ IHEP

Higgs, the focus, the gate

CEPC, the KEY

Spared

Observables and expected accuracy

Accelerator \rightarrow	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity ↓	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	$\begin{array}{c} 250 \; {\rm GeV} \\ 250 \; {\rm fb}^{-1} \end{array}$	250+350+ 1000 GeV	$350 { m ~GeV} (500 { m ~fb}^{-1})$ $1.4 { m ~TeV} (1.5 { m ~ab}^{-1})$	$240~{ m GeV}\ 2~{ m ab}^{-1}~(*)$	240 GeV 10 ab ⁻¹ 5 yrs (*)
·			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 5 yrs (*)
N _H	1.7×10^7	1.7×10^{8}	$6 \times 10^4 \text{ZH}$	$\frac{10^5\mathrm{ZH}}{1.4\times10^5\mathrm{Hvv}}$	$\begin{array}{c} 7.5\times10^{4}\:\mathrm{ZH}\\ 4.7\times10^{5}\:\mathrm{Hvv} \end{array}$	$4 \times 10^5 \text{ZH}$	$\begin{array}{c} 2\times10^{6}\mathrm{ZH}\\ 3.5\times10^{4}\mathrm{Hvv} \end{array}$
m _H (MeV)	100	50	35	35	100	26	7
$\Delta\Gamma_{\rm H}$ / $\Gamma_{\rm H}$			10%	3%	ongoing	4%	1.3%
$\Delta\Gamma_{\rm inv}$ / $\Gamma_{\rm H}$	Indirect (30%?)	Indirect (10% ?)	1.5%	1.0%	ongoing	0.35%	0.15%
$\Delta g_{H\gamma\gamma} / g_{H\gamma\gamma}$	6.5 - 5.1%	5.4 – 1.5%		5%	ongoing	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	< 3%	2.2%	0.7%
Δg_{Hww} / g_{Hww}	5.7 – 2.7%	4.5 – 1.0%	4.3%	1%	~1%	1.5%	0.25%
Δg_{HZZ} / g_{HZZ}	5.7 – 2.7%	4.5 – 1.0%	1.3%	1.5%	~1%	0.65%	0.2%
Δg_{HHH} / g_{HHH}		< 30% (2 expts)		~30%	~22% (~11% at 3 TeV)		
$\Delta { m g}_{ m H\mu\mu}$ / ${ m g}_{ m H\mu\mu}$	< 30%	< 10%			10%	14%	7%
$\Delta g_{H\tau\tau}$ / $g_{H\tau\tau}$	8.5 – 5.1%	5.4 – 2.0%	3.5%	2.5%	≤ 3%	1.5%	0.4%
$\Delta g_{ m Hcc}$ / $g_{ m Hcc}$			3.7%	2%	2%	2.0%	0.65%
Δg_{Hbb} / g_{Hbb}	15 - 6.9%	11 —2.7%	1.4%	1%	1%	0.7%	0.22%
$\Delta g_{Htt}/g_{Htt}$	14 - 8.7%	8.0 - 3.9%		5%	3%		30%

ArXiV: 1302.3318 (在测算耦合常数时未考虑总宽度误差)

	e^+e^- collider	photon collider
c.m.s	$240~{ m GeV}$	$160 {\rm GeV}$
N_{Higgs}	100k	50k
$\delta M_H/{ m MeV}$	26	60
Spin/Parity	Yes	Yes
$\sigma(HZ)$	2.3%	
$\sigma(HZ)Br(H \to b\bar{b})$	1%	
$\sigma(HZ) Br(H \to WW^*)$	5.5%	
$\sigma(HZ)$ Br(H \rightarrow gg)	6.1%	
$\sigma(HZ)$ Br(H $\rightarrow \tau^+ \tau^-)$	3.6%	
$\sigma(HZ) Br(H \to c\bar{c})$	7.2%	
$\sigma(HZ) Br(H \to ZZ^*)$	16%	
$\sigma(HZ)\mathrm{Br}(\mathrm{H}\to\gamma\gamma)$	26%	
$\sigma(HZ)Br(H \to \mu^+\mu^-)$	29%	
$\sigma(HZ)Br(H \to invisible)$	0.5%	
$\Gamma(H \to \gamma \gamma) \mathrm{Br}(\mathrm{H} \to \mathrm{b}\bar{\mathrm{b}})$		1%
$\Gamma(H \to \gamma \gamma) \mathrm{Br}(\mathrm{H} \to \mathrm{WW}^*)$		3%
$\Gamma(H \to \gamma \gamma) \mathrm{Br}(\mathrm{H} \to \gamma \gamma)$		12%
$\Gamma(H \to \gamma \gamma) \operatorname{Br}(H \to ZZ^*)$		6%
$\Gamma(H \to \gamma \gamma) \mathrm{Br}(\mathrm{H} \to \mathrm{Z} \gamma)$		20%
$\Gamma(H \to \gamma \gamma) \mathrm{Br}(\mathrm{H} \to \mu^+ \mu^-)$		38%

Design new geometry

Spin off – geometry validation analysis chains 42

CEPC Training - I @ IHEP

Cost estimation: extrapolate from ILD

0.9 0.8 TPC 0.7 ECAL **HCAL** Coil 0.6 Yoke & Muon 1700 1400 1500 1600 1800 Ř_{TPC} 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 the source the feat that feat much coil take much on the source of the start to source of the source 54

Sub Detector Cost Scale With TPC Radius

MILCU 380 360 340 320 300 280 Thick/Thin Yoke 260 1400 1500 1600 1700 1800 R_{TPC}

Total Cost as a function of TPC Radius

ILD Cost ~ 400 MILCU CEPC detector ~ 270 MILCU ~ 1.6 Billion CNY ~ 3 B CNY for 2 detectors;

Without manpower ng - I @ IHEP

19/10/2013

CEPC Training - I @ IHEP

Higgs recoil mass spectrum: mH and $\sigma(ZH)$ measurement

反冲质量方法: 通过质心能量及 Z 的四动量推算 Higgs 粒子四动量,进而计算其不变质量。 对 Higgs 衰变末态的信息不做任何要求:模型无关的测量。 利用 LC 探测器精良的径迹系统,通过 Z 衰变轻子道 (Z→µµ) 测量 Higgs 反冲质量。 该方法可同样用于 Z→qq 末态:需要好的喷注能量分辨,依赖粒子流算法

Fast simulation of recoil mass spectrum

Resolution Vs Polar Angle: 10 GeV Muon, R = 1400Z = 2000

Recoil mass at different TPC Radius

19/10/2013

CEPC Training - Nevts scaled by a factor of ~ 5 47

Measurement of $\sigma(HZ)^*Br(H\rightarrow 2j)$

- Represent reconstructed jets by MC Truth quark * percentage energy smearing
- Main backgrounds ZZ, WW events into 4 jets
- Define Chi2 = $((M_{i,i} MB_1)/\sigma_1)^2 + ((M_{k,i} MB_2)/\sigma_2)^2$, Ijkl runs over all 3 combinations

Performance at different Jet E resolution

19/10/2013

Modeling of Flavor tagging

 $O = M^*T$; *M*, *Migration Matrix* O, *T*: vector of number of events in each final state, Observed & Truth $T = T(Branching \ ratios)$ CEPC Training - I @ IHEP

19/10/2013

Measuring $\sigma(HZ)^*Br(H\rightarrow 2j)$, j = b, c, g

PFA is critical for $Br(H \rightarrow gg, cc)$ measurement...19/10/2013CEPC Training - I @ IHEP

Status of on going analysis

CEPC Training - I @ Need manpower & time!

Full simulation & Reconstruction

DRUID, RunNum = 0, EventNum = 9001

Full simulation

Started: 50 busy CPUs

Target geometry

Default one

1-2 benchmark models (to be fixed)

Tactics

Signal (~300k) at each model: 1 week (done) Background (~10M) at 1 model: 7 month... Fast simulation tools validation. Fast – Full Simulation comparison: enable extrapolation Reconstruction algorithm development, validation & optimization: hardcore PFA optimization Lepton id & Tau id Jet tagging & clustering...

pbssrv.ihep.ac.cn: Req'd Req'd Elap ID NDS TSK Memory Time S Time Job ID Username Queue Jobname 9671113.pbssrv.i yangy higgsg sub job16 sh 23831 R 20.25 9671114.pbssrv.i higgsg sub job17.sh yangy 10669 R 20:24 9671118.pbssrv.i higgsq subjob21.sh 1319 R 20:25 yangy 9671120.pbssrv.i higgsg sub job23.sh R 20:25 yangy 1089 sub job26.sh 9671123.pbssrv.i yangy niggsa 2067 R 20.25 9671126.pbssrv.i 11111 vangy sub-iob29.sh R 20:25 higgsq sub job30.sh 9671127.pbssrv.i 878 R 20:25 yangy higgsq sub job32.sh 2094 9671129.pbssrv.i yangy higgsq R 20:21 11366 9671132 pbssrvi R 20:21 yangy higgsg -sub iob35.sh R 20:22 9671133.pbssrv yangy higgsq sub_job36.sh 9671134.pbssrv.i yangy higgsq sub_job37.sh 7259 R 20:22 9671135.pbssrv.i yangy higgsq sub job38.sh 21268 R 20:22 9671136.pbssrv.i sub_iob39.sh 2067 R 20:21 yangy higgsq 1407 R 20:22 9671139.pbssrv.i higgsq sub iob42.sh yangy 9671141.pbssrv.i higgsq sub job44.sh 21462 R 20:22 yangy 9671143.pbssrv.i 2504 R 20:22 yangy higgsg sub job46.sh yangy 31591 9681583.pbssrv.i R 09:48 higgsg sub job1.sh 37 nhssrv yangy higgsd sub job10.sh 2408 R 09.3 26740 R 09:28 9682295 phssrv i yangy higgsg sub iob11.sh 21491 sub job12.sh R 09:28 9682297.pbssrv vangv higaso 99 phssrv yangy hiaasa sub iob13.sh 12874 R 09:28 9682301 obssrv vangy higasa sub iob14.sh 23660 R 09:28 28101 682302.pbssrv.i yangy sub_job15.sh R 09:28 13918 0682304.pbssrv.i yangy sub job18.sh R 09:27 682308.pbssrv.i sub job20.sh 22549 R 09:27 yangy higgsq vangy sub_job22.sh 24973 9682314.pbssrv.i R 09.26 9682317 pbssrv.i sub_job24.sh 14816 yangy R 09:26 higgso higgsq sub_job25.sh 9852 R 09.26 682320 pbssrv. vangy higgsq sub_job27.sh 23447 682323 phssrv R 09.26 25637 9682325.pbssrv.i yangy higgsg sub job28.sh R 09:26 9682327.pbssrv.i yangy higgsq sub_job2.sh 469 R 09.26 30408 9682335.pbssrv.i higgsq sub job31.sh R 09:25 yangy 1468 higgsq sub job33.sh 9682425.pbssrv.i yangy R 09:23 26597 9682477.pbssrv.i yangy higgsq sub iob34.sh -- R 09.24 11161 9682571.pbssrv.i yangy hiqqsq sub job3.sh 9682572 phssrv i yangy higgsq sub job40.sh 25202 2102 9682573.pbssrv.i yangy higgsq sub job41.sh -- R 09:22 sub job43.sh 16453 9682575.pbssrv.i yangy higgsq -- R 09:22 sub job45.sh 12470 R 09:21 9682576 pbssrv i yangy higgsq 933 sub_job47.sh R 09:19 0682595.pbssrv. yangy hiqqsq 32347 R 09:14 9682778.pbssrv.i sub iob5.sh yangy higgsq sub job6.sh 607 - R 09:14 9682779.pbssrv.i yangy higgsq R 09:14 9682780.pbssrv.i sub job7.sh 4843 yangy hiqqsq 30955 R 09:14 sub_iob8 sh 9682781 pbssrv i yangy hiaasa 22228 -- R 09:14 9682782.pbssrv.i yangy hiaasa sub iob9.sh 9682792 pbssrv i yangy sub iob4.sh 10038 -- R 09:11 hiaasa

[mangi@lxslc508 ~]\$ gstat -u yangy

DRUID, RunNum = 0, EventNum = 9001

Reconstruction with Arbor

55

Open discussing

- Operation program: 100 k Higgs, or more?
 - Electricity cost ~ 10^9 CNY/y (half a detector)
 - Site power 200 MW, 2*10⁷ s/y, 0.5 CNY/kwh
 - Objective: 100k Higgs, or more?
 - 200 400 fb⁻¹ per IP per year?
 - *ILC: 250 fb⁻¹/5 year;*
 - LEP3: 100 fb⁻¹/(year*IP), 2 ab⁻¹ with 4 IP.
 - TLEP: 10 ab⁻¹
- Detector: as precise as possible
 - hardware + reconstruction
- **Detector geometry**: tell me your concern!
- Logo & Name?

		ILC-250	TLEP-240
	σ _{HZ}	2.5%	0.4%
ġ	σ _{HZ} ×BR(H→bb)	1.0%	0.1%
	σ _{HZ} ×BR(H→cc)	6.g%	1.3%
	σ _{HZ} ×BR(H→gg)	8.5%	1.4%
	σ _{HZ} ×BR(H→WW*)	8.0%	0.9%
ir oppornt	σ _{HZ} ×BR(H→ττ)	5.0%	0.9%
	σ _{HZ} ×BR(H→ZZ*)	28%	3.1%
	σ _{HZ} ×BR(H→γγ)	27%	3.0%
	σ _{HZ} ×BR(H→μμ)	-	13%
	$\Gamma_{\rm INV}/\Gamma_{\rm H}$	< 1.5%	< 0.3%
	m _H	40 MeV	8 MeV
		ILC-350	TLEP-350
CEPC Training - I @ IF	σ _{ww→H}	3%	0.5%
CLIC Inaming - I (0) II.	Γ _H	5-5%	1.1%