PFA Oriented Gaseous Calorimeter & its digitization: G2CD

Manqi

Digitization, what is it?

- Two steps of the simulation
 - Geant4 Mokka: energy deposition in sensitive volume
 - ~MeV/mm in solid
 - Nature unit of energy deposition: MIP
 - Digitization: estimate the electronic response from the energy deposition
- Digitizer
 - Indispensable component of full simulation
 - Should include/model all the important response of detector: efficiency, fluctuation, noise, pedestal, …
 - Request profound understanding of the physics/mechanism of detection

Content

- Introduction to Glass RPC Digital Hadron calorimeter
 - PFA oriented, gaseous calorimeter for the ILC
 - RPC & it's characteristics
 - RPC performance: measurement at Test Beam & modeling at the Digitizer
- G2CD Digitization, an simple example of reconstruction

PFA Oriented Calorimeter

Jet resolution & PFA

Given a perfect detector with no confusion:

J-C. Brient - IWLC 2010

$$\sigma^2$$
 jet = σ^2 ch. + $\sigma^2 \gamma$ + $\sigma^2 h^0$ gives about $(0.14)^2 E_{jet}$

Jet energy resolution

09/03/2011

6

PFA Oriented LC detectors

 PFA: less confusion ~ good separation ~ high granularity Granularity > Energy Resolution for the Calorimetry... (exception: 4th concept with dual readout HCAL)

- PFA Oriented detector (both have ILC/CLIC Versions):
 - ILD (European + Asia, International Large Detector): TPC (+ Silicon inner detectors) tracking with B = 3.5T
 - SiD (US, Silicon Detector): Silicon tracking with B = 4T

High granularity Calorimetry

Scintillator AHCAL with 3 * 3 cm cell @ DESY

2 GRPC Digital HCAL with 1 * 1 cm cell: SDHCAL @ IPNL et al DHCAL @ Fermi Lab

09/03/2011

Calorimeter R&D for ILD

Ultra high granularity ~ 1 channel cm⁻³. 3d, 4d or 5d image...

09/03/2011

Gas Vs Scintillator

Gas: High granularity (1*1 cm) @ low cost

To compare:

Sensor layer in Scintillator AHCAL. Cell size: 3*3 cm, 6*6 cm & 12 * 12 cm

- Gaseous detector:
 - RPC: High efficiency, homogeneous, low cost, robust...
 - Huge fluctuation on induced charge: Semi-digital (channel coded on 2 bits)
 - Free of neutron hits

Neutron hits

Modeling of GRPC Performance & development of G2CD

Avalanche @ gaseous detector

- Once one charged particle sailing though the RPC: •
 - Efficiency: chance to create a hit (~ Induced charge > Threshold)
 - Multiplicity: number of hits in one lighted layer \sim number of cells with Induced charge > Threshold
 - Typical value ~ 1.4 1.8 at GRPC, ~ 1.1 at MicroMegas
- Charge Image scale ~ 1mm (depending on resistive plates thickness) 09/03/201Both can be measured at Test Beam

Measurement of efficiency and multiplicity

Efficiency and Multiplicity of the 48-layer GRPC prototype measured at CERN Test beam data: using MIP event

Efficiency & Multiplicity: from the P.o.V of induced charge

Figure 9. May 2012 GRPC SPS test beam: (left) Induced charge spectrum for 1 mm simulated hits and (right) Resolved induce charge spectrum for direct hits (red) and multiplicity hits (blue)

^{09/03/2011} Multiplicity hits: hits where no charged particle hit on it directly

Resolve the induced charge spectrum from efficiency-threshold scan

Figure 4. MicroMegas: (Left) Efficiency versus threshold curve. Black spots: experimental measurement. Red curve: G2CD reproduced curve (right) Resolved probability distribution function $P(x) = Nx^{0.7}e^{-0.045x} + 0.03$ defined in a domain of (0, 300) fC

Induced Charge spectrum can also be measured from Analogy readout: $_{09/0}$ Mover, bias might be induced since the readout system is different from digital... $_{16}$

To characterize the avalanche

- Charge image at the anode
 - Total induced charge: measured from the eff-threshold scan
 - Polya function with only 2 parameters

$$P(x) = Nx^a e^{-bx}$$

- Spatial distribution of the charge: measured from the multiplicity-position dependence
 - Summarized into a numeric table

How many mips - avalanches can there be?

- Charge image ~ 1 mm²
 - To 1st order, MIPs separated with distance > 1mm should be independent
 - MIPs hits too close should be regarded as only one hit, since the discharge process is saturated

Key Idea

Keep simulation level information to 1mm cells: count corresponding number of hits in/nearby each Digitized cell

Accumulate the induced charge in each Digitized cell

Key Idea

- Advantages:
 - Natural cut off: 1mm ~ size of charge image
 - Self Saturation & easy to integrate other saturation effects
 - Reliable estimation of multiplicity
 - Samples: available for other analysis (optimized cell size, fractal dimensional analysis...)
- Cost:
 - Machine time: the same
 - Data size: increased ~ 5% (ParticleCont recorded & Nhits increased by 2 – 3 times, Test on 20GeV Klong sample with only PRC HCAL & B Field:)
 - Negligible at full detector event: Utilize as Simulation base line

æ

≞

-

ъ

¶,

в

8

2 **"**₿

4

₽

1

8 • DRUID, RunNum = 0, EventNum = 8 в в Count 1mm hits inside . . (neighbour to) 10mm cell... ₩₽ ₽ Β . Digitized hit colour to charge: ~ æ • 1.5 - 1.6pC/mip • ₽60 чња ₫. F ₽ Ð F æ þ ъ **____**_ В

Simu & Digi hits

Left: simulation level (1 mm cell: size zoned by 5 for display. Colour: EM, MIP or Neutron hit) Right: Digitization level (10mm cell. Colour according to Charge)

Comparison with the test beam measurement

Figure 5. MicroMegas: (Left) Multiplicity versus threshold curve. Black spot, experimental measurement. Red curve, G2CD reproduced ones. (right) Resolved induce charge spectrum for direct hits (red) and multiplicity hits (blue)

Comparison with the test beam measurement

Reproduced efficiency, multiplicity for of MIP event for MicroMegas & GRPC Reproduced number of hits for pion event at GRPC

Now, let's have a look at the Kitchen...

```
[mangi@lxslc507 src]$ pwd
/afs/ihep.ac.cn/users/m/mangi/Analysis/Arbor/ArborF1/src
[mangi@lxslc507 src]$
[mangi@lxslc507 src]$
[manqi@lxslc507 src]$ ls -ltr
total 192
-rwxr-xr-x 1 mangi physics 41512 Aug 12 23:25 Ranger.cc
-rwxr-xr-x 1 mangi physics 19614 Aug 12 23:25 G2CD.cc
-rwxr-xr-x 1 mangi physics 9060 Aug 12 23:25 BushMeasure.cc
-rwxr-xr-x 1 mangi physics 45651 Aug 12 23:25 BushConnect.cc
-rwxr-xr-x 1 mangi physics 16149 Aug 12 23:25 BranchConnect.cc
-rwxr-xr-x 1 mangi physics 10287 Aug 12 23:25 BranchAna.cc
-rwxr-xr-x 1 mangi physics 27784 Aug 12 23:25 ArborTool.cc
-rwxr-xr-x 1 mangi physics 9093 Aug 12 23:25 ArborPID.cc
[mangi@lxslc507 src]$
[mangi@lxslc507 src]$
```

09/03/2011

G2CD

- Short code ~ 650 lines of source code
- Standard Marlin module
 - Compiled with Cmake tools
 - Called as Marlin Dynamic Linked Library
- Function:
 - Input: Simulated Calorimeter Hits (SimuCalorimeterHit)
 - ECAL: 5 mm cell
 - HCAL: 1 mm cell
 - Output: Digitized Calorimeter Hits (CalorimeterHit)
 - ECAL: scale the energy deposition by an Calibration constant
 - HCAL: calculate the induced charge at real cell

G2CD: steering

.begin MyG2CD
ProcessorType G2CD

CalibrECAL 60.91 81.81

ChanceOfKink 0

ChargeSpatialDistribution 1.0

DigiCellSize 10

DigiECALCollection	ECALBarrel	ECALEndcap	ECAL0ther
--------------------	------------	------------	-----------

- DigiHCALCollection HCALBarrel HCALEndcap HCALOther
- ECALCollections EcalBarrelSiliconCollection EcalEndcapSiliconCollection EcalEndcapRingCollection
- ECALThreshold 5e-05
- HCALCollections HcalBarrelCollection HcalEndCapsCollection HcalEndCapRingsCollection
- KinkHitChargeBoost 1
- NumThinEcalLayer 20
- PolyaParaA 1.1
- PolyaParaB 1.0
- PolyaParaC 0.0

PositionShiftID00registerProcessorParameter("UsingDefaultDetector",
"Flag Parameter Setting (0 ~ self definition, 1 ~ MircoMegas, 2 ~ GRPC_PS, 3 ~ GRPC_SPS)",
UsingDefaultDetectorUsingDefaultDetector,
0);

end -----

G2CD: Header

- #include <EVENT/LCCollection.h>
 #include <EVENT/MCParticle.h>
 include <EVENT/SimCalorimeterHit.h>
 #include <EVENT/CalorimeterHit.h>
 #include <EVENT/LCFloatVec.h>
 #include <EVENT/LCParameters.h>
 #include <IMPL/CalorimeterHitImpl.h>
 #include <IMPL/LCCollectionVec.h>
 #include <IMPL/LCFlagImpl.h>
 #include <IMPL/LCRelationImpl.h>
 #include "UTIL/CellIDDecoder.h"
- #include <values.h>
 #include <string>
 #include <iostream>
 #include <cmath>
 #include <stdexcept>
 #include <stdexcept>
 #include <TFile.h>
 #include <TFile.h>
 #include <Atypes.h>
 #include <TF1.h>
 #include <TF1.h>
 #include <TF1.h>
 #include <TRandom.h>
 #include <TVector3.h>

Calling IMPL/*.h

To create new collections and write into Icio file

ECAL Digitization

```
LCFlagImpl flag;
flag.setBit(LCI0::CHBIT LONG);
                                                //To set position & ID1
flag.setBit(LCI0::CHBIT ID1);
flag.setBit(LCI0::RCHBIT ENERGY ERROR); //In order to use an additional FLOAT
for (unsigned int k0 = 0; k0 < ecalCollections.size(); ++k0)</pre>
1
       try{
                LCCollection *Ecalcol = evtP->getCollection( _ecalCollections[k0].c_str() ) ;
                CellIDDecoder<SimCalorimeterHit> idDecoder( Ecalcol );
                int NumEcalhit = Ecalcol->getNumberOfElements();
                LCCollectionVec *ecalcol = new LCCollectionVec(LCI0::CALORIMETERHIT);
                ecalcol->setFlag(flag.getFlag());
                string EcalinitString = Ecalcol->getParameters().getStringVal(LCI0::CellIDEncoding);
                ecalcol->parameters().setValue(LCI0::CellIDEncoding, EcalinitString);
                for(int k1 = 0; k1 < NumEcalhit; k1++)</pre>
                Ł
                        SimCalorimeterHit * SimEcalhit = dynamic_cast<SimCalorimeterHit*>( Ecalcol->getElementAt( k1 ) );
                        HitEn = SimEcalhit->getEnergy();
                        LayerNum = idDecoder(SimEcalhit)["K-1"];
                        if(LayerNum < _NEcalThinLayer)</pre>
                                DigiHitEn = HitEn * _calibCoeffEcal[0];
                        else
                                DigiHitEn = HitEn * _calibCoeffEcal[1];
                        if(HitEn > _thresholdEcal)
                        ł
                                CalorimeterHitImpl * DigiEcalhit = new CalorimeterHitImpl();
                                DigiEcalhit->setPosition(SimEcalhit->getPosition());
                                DigiEcalhit->setCellID0(SimEcalhit->getCellID0());
                                DigiEcalhit->setCellID1(SimEcalhit->getCellID1());
                                DigiEcalhit->setEnergy(DigiHitEn);
                                ecalcol->addElement(DigiEcalhit);
                                LCRelationImpl *rel = new LCRelationImpl(DigiEcalhit, SimEcalhit, 1.0); //only keep the leading contribution
                                relcol->addElement(rel);
                        }
                }
                evtP->addCollection(ecalcol,_outputEcalCollections[k0].c_str());
        }catch(lcio::DataNotAvailableException zero) { }
```

```
09/03/2011
```

}

HCAL Digitization: More complex

- Read each 1mm cell:
 - Generate a random number according to the Polya function

```
_QPolya = new TF1("QPolya", "x^[0]*exp(-1*x*[1]) + [2]", 0, PolyaDomain);
_QPolya->SetParameters(_PolyaParaA, _PolyaParaB, _PolyaParaC);
```

```
RndCharge = _QPolya->GetRandom();
```

 According to its position, calculate the charge partition in current cell and 3 neighboring cells

• For each digitized cell, accumulate all the charge in its area

09/03/2011

HCAL Digitized Hit

```
for(std::map <int, DigiHit>::iterator ff = IDtoDigiHit.begin(); ff!=IDtoDigiHit.end(); ff++)
ł
        CalorimeterHitImpl * calhit = new CalorimeterHitImpl();
        LCRelationImpl *rel = new LCRelationImpl(calhit, ff->second.LeadSimCaloHit, ff->second.ChargeShare);
        relcol->addElement(rel);
        calhit->setCellID0( ff->first );
        calhit->setEnergy(ff->second.digihitCharge);
                                                                //Charge
                                               //Use ID1 & Energy Error to denote the MCP info...
        calhit->setCellID1(SingleMCPPID);
        calhit->setEnergyError(SingleMCPPEn);
        /*
           DigiHitPos[0] = ff->second.PosX;
           DigiHitPos[1] = ff->second.PosY:
           DigiHitPos[2] = ff->second.PosZ;
           */
        DigiHitPos[0] = IDtoPos[ff->first].X();
        DigiHitPos[1] = IDtoPos[ff->first].Y();
        DigiHitPos[2] = IDtoPos[ff->first].Z();
        calhit->setPosition(DigiHitPos);
        hcalcol->addElement(calhit);
}
evtP->addCollection(hcalcol,_outputHcalCollections[i].c_str());
```

```
IDtoDigiHit.clear();
```

Summary

- Gaseous sensor + ultra high granular digital readout is a promising technology for the PFA orientated detector
- Digitizer is the indispensable part of full detector simulation, which request profound understanding of physics processes at detection
- G2CD, use simple modeling of avalanche charge image, provide a common Digitization tool for gaseous detector
 - Tested on both MicroMegas and GRPC
 - Include 4 parameter sets according to different TB
- Reconstruction, in some sense, is to read Icio informations and to write new collections into the same file: use IMPL classes in LCIO