Fast simulation of Br(H→bb, cc, gg) measurement

Manqi

19/10/2013

CEPC Training - IV @ IHEP

1

快速模拟软件

海量数据: ~107事例/(探测器*束流设置)

对任一可观测量(喷注能量,丢失能量,径迹动量,轻子,夸克味道鉴别效率...): 重建结果 = 真值分布 ⊗ 分辨率 ⊗ 系统效应(效率,偏差等) 可调试及开发相应快速模拟算法:

第一阶段:仅仅考虑探测器分辨率

第二阶段:系统效应的模拟 (效率,接受率,偏差...): 由全模拟数据分析建模

CEPC: 8 + 2 measurements for SM higgs

- Mass, spin, total cross section
- Branching ratios (b, c, tau, g, W)
- Branching ratios (gamma, mu)
- Calculate: width coupling
- Other measurements, SM & exotics...

Mode	$b\overline{b}$	$c\overline{c}$	gg	WW^*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$\mathrm{Z}\gamma$
BR (%)	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16
	g(Hbb), g(Hcc), g(Htt), g(HWW)/Γ _н , g(Hμμ),				g(Нтт),	g(HZZ)/F	_H , g(HWW))/g(Htt)	

$\sigma(H\rightarrow 2j)$ & Br(H \rightarrow bb, cc, gg)

Xsec/fb	LL	LR	RL	RR	Non-pola/evts at 500 fb ⁻¹
ww_h		14874	136.4		3752 fb ~ 1.87 M
zz_h		1402	604		502 fb ~ 250 k
zzorww_h		12383	225		3152 fb ~ 1.58 M

Signal, ZH with Z to qq and Higgs to qq or gg ~ 48.6 k

CEPC Training - IV @ IHEP

Pairing quarks

- Represent reconstructed jets (FS-0):
 - MC Truth quark * percentage energy smearing
 - Ignore neutrinos & misidentification of 4 jets events and other events
- Define Chi2 = $((M_{i,j} MB_1)/\sigma_1)^2 + ((M_{k,l} MB_2)/\sigma_2)^2$
 - weighted by breit-wigner & resolution
 σ = sqrt(B-W Width**2 + InvMassError**2),
 - InvMassError = JetEreso*InvMass/sqrt(2)
 - B-W width W: 2.12 GeV, Z: 2.45 GeV
 - Ijkl runs over 3 combinations
 - B1, B2 = ZZ, WW, ZH or HZ
- The minimal chi2 indicate both event type and jet pairing

$M_1 - M_2$ distributions

Event classification with ZH: at different jet energy resolution

CEPC Training - IV @ IHEP

Event classification with ZH: at different jet energy resolution

8%: fake ZZ & WW separation became difficult...

ZH event output: at different jet energy resolution

- Event identification on pure signal (137k after selection ~ 1400 fb)
 - ZH': still identified as ZH event, however, the pairing is not correct
 - Of course one can use other variables, for example b-likelihood and direction of boson – but here is what has been associated directly with Jet energy resolution...

Jet Energy resolution:	ZH	ZH'	ZZ	WW
2%	96.3%	1.4%	1.4%	0.9%
3%	95.4%	2.0%	1.6%	1.1%
4%	94.3%	2.6%	1.8%	1.2%
5%	93.0%	3.3%	2.2%	1.5%
6%	91.5%	4.1%	2.7%	1.7%
7%	89.7%	4.9%	3.4%	2.0%
8%	87.6%	5.7%	4.3%	2.4%

Event classification: zzorww

 Identify signal as background may not be really a serious problem – even at 7% jet energy resolution (conventional) we can still have an efficiency of 90% - but identify backgrounds as signal would be another story... WW

ZZ

Tagged ZH Signal with $\delta(E_{j})/E_{j} = 4\%$

Pairing quarks on backgrounds

Sample statistic:

zz, 100k; ww, 107k; zzorww, 107k;

ZH'

1.5

1.9

2.2

2.5

2.8

3.2

3.4

ZZ

6.8

6.5

6.7

7.3

8.2

9.4

10.7

n	δE _J /E,	ZH	ZH'	ZZ	WW
Л	ZZ				
	2%	4.8	5.1	81.6	9.5
	3%	5.5	5.7	78.6	10.1
	4%	6.0	6.2	77.0	10.8
	5%	6.3	6.5	75.2	12.0
	6%	6.5	6.8	73.0	13.7
	7%	6.7	7.0	70.6	15.8
	8%	7.0	7.2	67.9	17.9
WW	δE _J /E,	ZH	ZH'	ZZ	WW
	zzorww				
90.0	2%	1.9	1.5	8.1	88.5
89.4	3%	2.3	1.9	7.9	87.8
88.5	4%	2.8	2.2	8.0	87.0
87.1	5%	3.2	2.5	8.6	85.7
85.4	6%	3.6	2.8	9.4	84.2
83.6	7%	4.0	3.1	10.6	82.3
81.6	8%	4.4	3.4	11.9	80.3

19/10/2013

δE_/E,

WW

2%

3%

4%

5%

6%

7%

8%

ΖH

1.8

2.2

2.7

3.1

3.6

3.9

4.3

CEPC Training - IV @ IHEP

Signal/noise statistics, in ZH region

- At 500 fb⁻¹, non-polarized beam.
- ZH' refers to ZH event identified but with wrong pair of quarks. Regard as noise
- Inverse of S/N ratio gives the precision on Cross section measurement however, model dependent (Higgs to quarks + gluon branching ratio)

	ZH	ZH'	ZZorww	ZZ	WW	S/sqrt(S+N)
Total Xsec	97 fb		3152	502	3752	
2%	46.7k	0.7k	53.6k	24.8k	61.9k	107.8
3%	46.2k	1.0k	66.2k	28.1k	76.9k	98.9
4%	45.7k	1.3k	78.8k	30.6k	91.9k	91.7
5%	45.1k	1.6k	89.8k	32.1k	105.1k	86.2
6%	44.1k	2.0k	100.9k	33.4k	120.1k	80.4
7%	43.5k	2.4k	111.9k	34.4k	133.2k	76.3
8%	42.5k	2.8k	122.9k	35.6k	144.5k	72.0

Signal over Noise Ratio

Modelling of Flavour tagging

 $O = M^*T$; *M*, *Migration Matrix* O, *T*: vector of number of events in each final state, Observed & Truth $T = T(Branching \ ratios)$ CEPC Training - IV @ IHEP

19/10/2013

Measuring Nevent of different type

PFA is still important for Br(H->gg, cc) measurement !... 19/10/2013 CEPC Training - IV @ IHEP

Most Sensitive Performances

- VTX:
 - Flavor tagging performance
 - Migration Matrix & dependency on Detector Design (Du Chun)
- Calorimeter and Particle Flow Algorithm
 - Negligible impaction on Br(H \rightarrow bb) (precision ~ 0.5-1%)
 - Important for Br(H \rightarrow cc, gg) (precision ~ 4% 10%)
 - Critical for CEPC Physics Program

Fast Simulation Package

• Ixslc5.ihep.ac.cn:/afs/ihep.ac.cn/users/m/manqi/Analysis/FourFermionAna

```
#include <TRandom.h>
#include <Rtypes.h>
#include <sstream>
#include <cmath>
#include <vector>
const float mZ = 91.2;
const float mW = 80.4:
const float mH = 125;
                               // 8% of jet energy resolution
const float JetReso = 0.08;
const float Zwidth = 2.495;
const float Wwidth = 2.085;
const float sqrtS = 250.0;
//~~~ Migration Matrix of Flavor Tagging;
const float Pb[3] = {0.90, 0.09, 0.01};
const float Pc[3] = {0.25, 0.70, 0.05};
const float Pg[3] = {0.03, 0.06, 0.91};
FourFermionAna a FourFermionAna instance;
FourFermionAna::FourFermionAna()
        : Processor("FourFermionAna"),
        output(0)
ł
        _description = "Print MC Truth" ;
        _treeFileName="MCTruth.root";
        registerProcessorParameter( "TreeOutputFile" ,
                        "The name of the file to which the ROOT tree will be written" .
                        _treeFileName ,
                        treeFileName);
```