The 11th ICFA Seminar on Future Perspectives in High-Energy Physics

Institute of High Energy Physics, CAS, October 27-30, 2014

Neutrinoless double beta decay: latest results and future perspectives

S. Schönert Technische Universität München (TUM)

$2\nu\beta\beta$ vs. $0\nu\beta\beta$ decay

$0\nu\beta\beta$ decay and neutrino mass

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral $\left\langle m_{ee} \right\rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$

Nuclear matrix element

Effective neutrino mass

 $U_{\it ei}~$ Elements of (complex) PMNS mixing matrix

Experimental signatures:

- peak at $Q_{\beta\beta} = m(A,Z)-m(A,Z+2)$
- two electrons from vertex Discovery would imply:
- lepton number violation $\Delta L = 2$
- v's have Majorana character
- mass scale & hierarchy
- physics beyond the standard model

Which half-lives shall next generation DBD experiments aim for ?

<u>3v-paradigm:</u>

- Next generation of experiments should probe mass range predicted for IH
- 10 meV mass range
- $0\nu\beta\beta$: $T_{1/2} \sim 10^{27} 10^{28}$ years

• (
$$2\nu\beta\beta$$
: $T_{1/2} \sim 10^{19} - 10^{21}$ years)

S. Schönert (TUM): Neutrinoless double beta decay – 11th ICFA Seminar, October 27-30, 2014, IHEP, Beijing

Which half-lives shall next generation DBD experiments aim for ?

S. Schönert (TUM): Neutrinoless double beta decay – 11th ICFA Seminar, October 27-30, 2014, IHEP, Beijing

Which half-lives shall next generation DBD experiments aim for ?

Standard $0\nu\beta\beta$ -decay with **3 light Majorana** neutrinos => probe 10 meV scale (10^{27} - 10^{28} years)

 $0\nu\beta\beta$ -decay including **eV sterile neutrinos** => can be around the corner – or unreachable

 $0\nu\beta\beta$ -decay with **driven by other mechanism then light Majorana neutrino exchange** => (nearly) every where

Experimentalist's pragmatic approach: prepare (if possible stage) next-generation experiments to probe $T_{1/2} \sim 10^{27} - 10^{28}$ years, ie. 10 meV scale – and be prepared that things change in the mean time....

<u>....in the mean time:</u> **eV sterile neutrinos:** SOX, Stereo, (and others), SBL will scrutinize eV sterile neutrinos

Mass ordering / hierarchy: Pingu, Juno (2020+), glob. analysis & later: LBL acc. Experiments

New data from direct mass measurement (KATRIN) & cosmology

No isotope significantly preferred by decay rate per mass

DOE NSAC report on $0\nu\beta\beta$ (24 April 2014), adopted from A. Dueck, W. Rodejohann and K. Zuber, Phys. Rev. D83 (2011) 113010

Signal rates & requirements for next generation experiments

The Xenon projects: EXO

- Liquid Xe Time Projection Chamber (TPC)
- Enriched ¹³⁶Xe to 80.6%

-8 kV

• Q-value 2458 keV

Ionization

- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA
- 1585 meters water equivalent

From M. Marino, NIAPP@TUM 2014

Scintillation

The Xenon projects: EXO

From M. Marino, NIAPP@TUM 2014

The Xenon projects: from EXO to nEXO

The Xenon projects: KamLAND-Zen

I. Shimizu, Neutrino 2014

preliminary

film BG

2.8

2.7

2.8

S. Schönert (TUM): Neutrinoless double beta decay – 11th ICFA Seminar, October 27-30, 2014, IHEP, Beijing

The Xenon projects: KamLAND-Zen

Xe-loaded liquid scintillator

The Xenon projects: NEXT-100 @ Canfranc

- Energy resolution: <1% FWHM @ $Q_{\beta\beta}$ =2458 keV
- PID: 2-blob signature

2015: commissioning with non-enriched Xe 2016-2020: physics with 100 kg enr-Xe

 $m_{\beta\beta} \sim 100 \, meV$

D. Lorca, PANIC 2014

SNO+ with ^{nat}Te

780 ton LAB+PPO in Ø12 m acrylic vessel 0.3% loading \rightarrow 2340 kg natTe / 800 kg ¹³⁰Te

2015: Scintillator filling 2016: physics run

FWHM ~ 270 keV @ $Q_{\beta\beta}$, sensitivity 5 yr T $_{1/2}$ > 1.0 10²⁶ yr (90% CL)

Bolometer experiments

0vββ emitters: ¹³⁰Te, ⁸²Se, ¹⁰⁰Mo & few others

Crystals: TeO₂, ZnSe, ZnMoO₄, CaMoO₄

Operation at <20 mK: C

 $C \propto T^{3}$ $\Delta T \propto \Delta E / C$ $TeO_{2}: \quad \Delta E \approx 5keV(FWHM) at Q_{\beta\beta} = 2528 keV$

Thermometer

Η

а

n

k

Cuore (w/o light detection) Lucifer, Lumineu, Amore (with light detection)

Bolometer experiments: Cuore (130Te)

Cuore-0: operation of Cuore detector-tower in Couricino cryostat

 α -, y-Backgrounds from nearby surfaces and bulk. Reduction w.r. to Cuoricino:

- 5.5x in alpha energy range
- 2.4x at $Q_{\beta\beta}$
- \rightarrow bgd in Cuore ≈ 0.01 cts/(keV kg y)
- → Cuore: 9.5 x 10²⁵ yr / 40-100 meV

	0vββ region cnts/(keV kg y)	2700-3900 keV	ε(%)
Cuoricino	0.153 ± 0.006	0.110 ± 0.001	83
CUORE-0	0.063 ± 0.006	0.020 ± 0.001	78

Future bolometer: TeO₂ with coincident Cherenkov detection

Future bolometer: scintillating crystals – Lucifer (ZnSe)

```
Q_{\beta\beta} (<sup>82</sup>Se) = 2995 keV
Array of 32-36 enr. (95%) Zn<sup>82</sup>Se crystals
Total <sup>82</sup>Se nuclei: (6.7-8.0) 10<sup>25</sup>
Single detector: 460 g
BI (goal): 1-2 x10<sup>-3</sup> cts / (keV kg yr)
\DeltaE (FWHM): 10-15 keV
```


Bgd (internal α's): 17.2±4.6 μBq/kg (²³²Th) 24.6±5.5 μBq/kg (²³⁸U) Isotope delivery: 9/15 kg ⁸²Se delivered final batch for 02/2015 Crystal growth: Schedule for Jan - June 20 Current yield: 70%

JINST 1305 (2013)

Germanium bolometric light detector: NTD sensor

From S. Pirro / M. Vignati

Future bolometer: scintillating crystals – Lumineu (ZnMoO₄)

S. Schönert (TUM): Neutrinoless double beta decay – 11th ICFA Seminar, October 27-30, 2014, IHEP, Beijing

From A. Giuliani

SuperNEMO Demonstrator @ LSM

- 2012: SuperNEMO demonstrator module start construction
- 5.56 kg of enriched ⁸²Se / 4.56 kg puried
- 2015: commissioning
- No background in the ROI in 2.5 years for 7 kg of ⁸²Se expected
- Sensitivity after 17.5 kgy exposure (90 % CL):

 $T_{1/2} > 6.5 \ 10^{24} \ yr \ (< m_{ee} > < 0.20-0.40 \ eV)$

Ge-experiments: GERDA @ LNGS

- 'Bare' ^{enr}Ge array in liquid argon
- Shield: high-purity liquid Argon / H₂O
- <u>Staged approach:</u>
 - Phase I: 18 kg (HdM/IGEX)
 - Phase II: add ~20 kg new enriched BEGe detectors

Ge-experiments: GERDA Phases

Ge-experiments: GERDA Phase I results

PRL 111 (2013) 122503

- Events ±20 keV blinded
- After freezing
 - energy calibration
 - data selection
 - statistical analysis method
 - pulse shape cuts unblinding June 2013
- Exposure 21.6 kg yr
- Background 0.01 cts/(keV kg yr) after PSD

 $T_{1/2}^{0
u} > 2.1 \cdot 10^{25} ~{
m yr}$ 90% C.L.)

• Median sensitivity (90% C.L.): >2.4×10²⁵ yr

Past 4.2 σ claim: GERDA should see 5.9±1.4 0v $\beta\beta$ events in ±2 σ interval above bgd of 2.0±0.3 GERDA best fit N^{0v} =0: P(N^{0v} =0|H₁ = signal+bgd) = 1% \rightarrow claim ruled out @ 99%

Phase II: 10⁻³ cts/(kg keV yr)

1/10

Phase I: 10⁻² cts/(kg keV yr)

Major hardware upgrade:

- Novel detectors with advanced pulse shape discrimination (BEGe's)
- Improved detector assembly & electronics
- Liquid argon instrumentation (veto system)
- Integration/commissioning ongoing

GERDA Phase II: novel Ge-detectors & LAr scintillation veto

Ge-experiments: Majorana Demonstrator (MJD)

40-kg of Ge detectors

- 30-kg of 87% enriched ⁷⁶Ge crystals required for science and background goals
- Point-contact detectors for DEMONSTRATOR

Low-background Cryostats & Shield

- ultra-clean, electroformed Cu
- naturally scalable
- Compact low-background passive Cu and Pb shield with active muon veto

- Located at 4850' level at Sanford Lab
- Background Goal in the 0vββ peak ROI(4 keV at 2039 keV)
- ~ 3 count/ROI/t-y (after analysis cuts) (scales to 1 count/ROI/t-y for tonne expt.)

From S. Elliot, NIAPP 2014

Ge-experiments: Majorana Demonstrator (MJD)

From S. Elliot, NIAPP 2014

Ge-experiments: Majorana Demonstrator (MJD)

Future Ge-experiments: GERDA & Majorana

'Bare' ^{enr}Ge array in liquid argon
Shield: high-purity liquid Argon / H₂O

•Phase I: 18 kg (HdM/IGEX)

LOI

•Phase II: add 20 kg new enr. detectors; total ~40 kg

•Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat

•Shield: electroformed copper / lead

•Initial phase: R&D demonstrator module: Total 40 kg (30 kg enr.)

Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques

open exchange of knowledge & technologies (e.g. MaGe MC)
intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the

best technologies tested in GERDA and Majorana

Also interests / discussion in China (Jin Ping)

Comparison of current Ge vs. Xe results

Comparison of sensitivities

Current experiments and future experiments/propsals

		mass [kg]* (total/FV)	FWHM [keV]	background ^{&} [cnt/mol yr FWHM]	T _{1/2} limit [10 ²⁵ yr] after 4 yr	<m<sub>ee> limit [meV]</m<sub>	date
Gerda II	Ge	35/27	3	0.0004	15	80-190	-2019
MajoranaD	Ge	30/24	3	0.0004	15	80-190	-2019
EXO-200	Xe	170/80	88	0.03	6	80-220	-2019
Kamland- Zen	Xe	383/88 (600/?)	250	0.03	20	44-120	-2018
Cuore	Те	600/206	5	0.02	14	40-160	-2019
SNO+	Те	2340/160	270	0.02	9	50-200	-2020
Kaml.2-Zen	Xe	1100/?	140	?	130	17-50	2020-24
nEXO	Xe	5000/4300	58	0.0007	600 (3000) ^{\$}	8-22 (4-10)	?

* total= element mass, FV= 0vββ isotope mass in fiducial volume (incl enrichment fraction)
 & mol of 0vββ isotope in active volume and corrected for 0vββ efficiency
 \$ assuming 10 years with Ba tagging

Compilation by B. Schwingenheuer

Conclusions & Remarks

 $0\nu\beta\beta$ -signal could be around the corner – or far away....

Goal of next-generation exp's: 10 meV scale (IH)

Experimental challenges are, first of all, to reduce backgrounds & increase exposure

New world wide collaborations; seeded by present collaborations Technology down-selection during coming few years

Conclusions & Remarks

$0\nu\beta\beta$ -signal could be around the corner – or far away....

Goal of next-generation exp's: 10 meV scale (IH)

Experimental challenges are, first of all, to reduce backgrounds & increase exposure

Following J.F. Wilkerson @ TUM NIAPP-workshop:

Evidence:

- correct peak energy
- single-site energy deposition
- event distribution in time and space
- signal to background (≥1:1)
- full energy spectrum understood

more direct, but even more difficult:

- observe two-electron nature & kinematics of event
- observe daughter
- observe decay to excited states

Convincing:

- observe $0\nu\beta\beta$ -signal in several different isotopes
- with different experimental techniques that meet above criteria for evidence