Predictions of Collins effects at BEPC

Peng Sun LBNL in collaboration with Feng Yuan

OutlinesEnergy evolution in TMD factorization

Collins asymmetry at BELLE and BABAR

Predictions of Collins asymmetries at BEPC in a <u>trivial</u> TMD factorization framework

Summary

QCD k_T resummation

• Consider the production process $h_1h_2 \rightarrow Z+X$

 $\frac{d\sigma}{dQ_T^2} \sim \frac{1}{Q_T^2} \left\{ \begin{array}{ll} \alpha_S(L+1) & +\alpha_S^2(L^3+L^2) & +\alpha_S^3(L^5+L^4) + \alpha_S^4(L^7+L^6) + \dots \\ & +\alpha_S^2(L+-1) & +\alpha_S^3(L^3+L^2) + \alpha_S^4(L^5+L^4) + \dots \\ & +\alpha_S^3(L+-1) + \alpha_S^4(L^3+L^2) + \dots \end{array} \right\}$

Where Q_T is the transverse momentum, and Q the mass of Z, and L = Log[Q² / Q_T^2].

We have to resum these large logs to make reliable predictions

$$\frac{d^3\sigma(M^2, P_\perp, y)}{d^2 P_\perp dy} = \sigma_0 \int \frac{d^2 \vec{b}}{(2\pi)^2} e^{-iP_\perp \cdot b_\perp} W(x_1, x_2, b, M^2)$$
$$W(Q, b) = e^{-\int_{1/b}^Q \frac{d\mu}{\mu} \left(\ln \frac{Q}{\mu} A + B \right)} C \otimes f_1 C \otimes f_2$$

Energy evolution in TMD factorization

 \mathbf{P}_{h}

For the process

$$e^+ + e^- \to H_1 + H_2 + X$$

The cross section can be written as

$$\frac{d\sigma}{dz_{h1}dz_{h2}d^2P_{h\perp}d\theta} = \frac{2\pi N_c \alpha^2}{4Q^2} \left[\left(1 + \cos^2\theta\right) Z_{uu} + \sin^2\theta \left(2\hat{e}_x^{\alpha}\hat{e}_x^{\beta} - g_{\perp}^{\alpha\beta}\right) Z_{collins}^{\alpha\beta} \right]$$

 \mathbf{P}_{h}

Energy evolution from TMD factorization

In the TMD factorization, at the small transverse momentum region

 $\widetilde{Z}_{uu} = D(z_1, b_\perp, \zeta_1; \mu) D(z_2, b_\perp, \zeta_2; \mu) H_{uu}^{e^+e^-}(Q; \mu) S(b_\perp, \rho; \mu) ,$ $\widetilde{z}^{\alpha\beta} = \widetilde{z}^{\perp\beta} (z_1, b_\perp, \zeta_1; \mu) D(z_2, b_\perp, \zeta_2; \mu) H_{uu}^{e^+e^-}(Q; \mu) S(b_\perp, \rho; \mu) ,$

 $\widetilde{Z}_{\text{collins}}^{\alpha\beta} = \widetilde{H}_{1}^{\perp\alpha}(z_{1},\underline{b_{\perp}},\zeta_{1};\mu)\widetilde{H}_{1}^{\perp\beta}(z_{2},b_{\perp},\zeta_{2};\mu)H_{\text{collins}}^{e^{+}e^{-}}(Q;\mu)S(b_{\perp},\rho;\mu)$

By a Fourier transformation

 $Z_{uu} and Z_{collins}$ satisfy CSS evolution equation

 $P_{h_{\perp}}/z$

$$\frac{\partial}{\partial \ln Q^2} \widetilde{Z}_{uu}(Q;b) = (K(b,\mu) + G(Q,\mu)) \widetilde{Z}_{uu}(Q;b)$$

At one-loop order

$$K(b,\mu) = -\frac{\alpha_s C_F}{\pi} \ln \frac{b^2 \mu^2}{c_0^2} \qquad G(Q,\mu) = -\frac{\alpha_s C_F}{\pi} \left(\ln \frac{Q^2}{\mu^2} - \frac{3}{2} \right)$$

Substituting the above result into the evolution equation, and taking into account the running effects in K

$$\begin{split} \widetilde{Z}_{uu}(Q;b) &= \underbrace{e^{-S_{pert}(Q^{2},b_{*})-S_{NP}^{e^{+}e^{-}}(Q,b)}}_{Z_{collins}(Q;b)} \Sigma_{q}D_{q}(z_{1},C_{0}/b)D_{\bar{q}}(z_{2},C_{0}/b) , \quad \mathbf{C_{0}} = \mathbf{2} \ \mathbf{e}^{-\mathbf{y}} \approx \mathbf{1} \\ \widetilde{Z}_{collins}^{\alpha\beta}(Q;b) &= \left(\frac{-ib_{\perp}^{\alpha}}{2}\right) \left(\frac{-ib_{\perp}^{\beta}}{2}\right) \underbrace{e^{-S_{pert}(Q^{2},b_{*})-S_{collins}^{e^{+}e^{-}}(Q,b)}}_{\mathbf{C}_{0}} \Sigma_{q}\hat{H}_{1q}(z_{h1},\underline{C_{0}/b})\hat{H}_{1\bar{q}}(z_{h2},C_{0}/b) \\ \mathbf{C}_{0} &= \mathbf{2} \ \mathbf{e}^{-\mathbf{y}} \approx \mathbf{1} \\ \underbrace{e^{-S_{pert}(Q^{2},b_{*})-S_{collins}^{e^{+}e^{-}}(Q,b)}}_{\mathbf{F}or \ perturbative \ part:} \qquad S_{pert}(Q,b) = \int_{c_{0}/b}^{Q} \frac{d\bar{\mu}}{\bar{\mu}} \left[A \ln \frac{Q^{2}}{\bar{\mu}^{2}} + B\right] \\ \text{where } \mathbf{A} = \mathbf{C}_{\mathsf{F}} \times \alpha_{\mathsf{s}}(\bar{\mu})/\pi , \quad \mathbf{B} = 3/2 \times \alpha_{\mathsf{s}}(\bar{\mu})/\pi \\ \text{We have to make a cutoff for the b in } \mathbf{S}_{pert} \\ b \Rightarrow b_{*} &= b/\sqrt{1 + b^{2}/b_{max}^{2}} , \quad b_{max} < 1/\Lambda_{QCD} \end{split}$$

For Sudakov factor

□ There are two parts in the Sudakov factor

$$\mathcal{S}_{sud} \Rightarrow \mathcal{S}_{pert}(Q; b_*) + S_{NP}(Q; b)$$

□ Gaussian assumption for the nonperturbative part

$$S_{NP}^{e^+e^-} = g_q b^2 \ln(Q/Q_0) + g_h b^2 \left(1/z_{h1}^2 + 1/z_{h2}^2\right)$$

$$S_{\text{collins}}^{e^+e^-}(Q, b) = g_q b^2 \ln(Q/Q_0) + g_c b^2 \left(1/z_{h1}^2 + 1/z_{h2}^2\right)$$

We assume the Q dependence always satisfies CSS equation.

The g_q is universal to Drell-Yan, SIDIS, and $e^+e^- \rightarrow hh$

SIDIS

SIDIS at HERMES We can get the g_q , g_h from the p_t distribution of cross section for SIDIS and Drell-Yan processes.

Here, these curves are from our fitting in a trivial TMD factorization framework.

SIDIS at COMPASS, Q²=7.75GeV², x=0.1

Drell-Yan

The black line is from C.P. Yuan and P. Nadolskyand their collaborators11

Collins asymmetries in $e^+e^- \rightarrow hh+X$ at BELLE and BABAR

The Collins asymmetries is proportional to $\cos(\phi_1 + \phi_2)$ or $\cos(2\phi_0)$

Besides Collins effect, the gluon radiation effect also can contribute to the term which is proportional to $\cos(\phi_1 + \phi_2)$ or $\cos(2\phi_0)$

$$\begin{array}{ll} \mbox{Firstly, we define:} & \mbox{Valence quarks go to pion} \\ N^{U}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \rightarrow \pi^{\pm}\pi^{\mp}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1}\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{7}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) & \mbox{Sea quarks go to pion} \\ N^{L}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \rightarrow \pi^{\pm}\pi^{\pm}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) + \frac{5}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{2}{9}D^{\mathrm{dis}}(z_{1}]\overline{D}^{\mathrm{dis}}(z_{2}) \\ N^{C}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \rightarrow \pi\pi X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} = N^{U}(\phi) + N^{L}(\phi) \propto \frac{5}{9}[D^{\mathrm{fav}}(z_{1}) + D^{\mathrm{dis}}(z_{1})][\overline{D}^{\mathrm{fav}}(z_{2}) + \overline{D}^{\mathrm{dis}}(z_{2})] + \frac{4}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) \\ \mbox{By a double ratio:} \quad \frac{R^{U}_{\alpha}}{R^{U}_{\alpha}} := \frac{N^{U}_{\alpha}(\beta_{\alpha})/\langle N^{U}_{\alpha}\rangle}{N^{L}_{\alpha}(\beta_{\alpha})/\langle N^{U}_{\alpha}\rangle} , (\alpha = 0, 12) \end{array}$$

A

$$\frac{R_{12}^{U}}{R_{12}^{L}} = 1 + \cos(\phi_{1} + \phi_{2}) \frac{\sin^{2}\theta}{1 + \cos^{2}\theta} \left\{ \frac{f\left(H_{1}^{\perp,fav}\overline{H}_{2}^{\perp,fav} + H_{1}^{\perp,dis}\overline{H}_{2}^{\perp,dis}\right)}{\left(D_{1}^{fav}\overline{D}_{2}^{fav} + D_{1}^{dis}\overline{D}_{2}^{dis}\right)} - \frac{f\left(H_{1}^{\perp,fav}\overline{H}_{2}^{\perp,dis}\right)}{\left(D_{1}^{fav}\overline{D}_{2}^{dis}\right)} \right\}$$

$$A^{\text{UL}}$$

Similarly, we also can get A^{UC} from the ratio $R^{U}\!/R^{C}$

$$\begin{split} A^{UL} &\sim \left\langle \frac{\sin^2 \theta}{1 + \cos^2 \theta} \right\rangle \frac{\pi \langle k_{tC}^2 \rangle}{4M^2} \left[\frac{H_1^{fav} \overline{H}_2^{fav} + H_1^{dis} \overline{H}_2^{dis}}{D_1^{fav} \overline{D}_2^{fav} + D_1^{dis} \overline{D}_2^{dis}} - \frac{H_1^{fav} \overline{H}_2^{dis} + H_1^{dis} \overline{H}_2^{fav}}{D_1^{fav} \overline{D}_2^{fav}} \right] \\ A^{UC} &\sim \left\langle \frac{\sin^2 \theta}{1 + \cos^2 \theta} \right\rangle \frac{\pi \langle k_{tC}^2 \rangle}{4M^2} \left[\frac{H_1^{fav} \overline{H}_2^{fav} + H_1^{dis} \overline{H}_2^{dis}}{D_1^{fav} \overline{D}_2^{fav} + D_1^{dis} \overline{D}_2^{dis}} - \frac{\left(H_1^{fav} + H_1^{dis}\right) \left(\overline{H}_2^{fav} + \overline{H}_2^{dis}\right)}{\left(D_1^{fav} - \overline{D}_2^{fav} + D_1^{dis} \overline{D}_2^{dis}} - \frac{\left(H_1^{fav} + H_1^{dis}\right) \left(\overline{H}_2^{fav} + \overline{H}_2^{dis}\right)}{\left(D_1^{fav} - \overline{D}_2^{fav} + \overline{D}_2^{dis}\right)} \right] \end{split}$$

The data at BELLE (Phys. Rev. D 78, 032011 (2008))

The data at BABAR

The Pt distribution for Collins asymmetries at BABAR

It is an important test for the TMD factorization with the Collins function.

- We will abstract the Collins function by fitting these data points.
- We will choose CSS resummation formulism.

$$\begin{split} \widetilde{Z}_{uu}(Q;b) &= e^{-\mathcal{S}_{pert}(Q^{2},b_{*})-S_{NP}(Q,b)} \Sigma_{i,j} \widehat{C}_{qi}^{(e^{+}e^{-})} \otimes D_{i/A}(z_{1})} \widehat{C}_{qj}^{(e^{+}e^{-})} \otimes D_{j/B}(z'_{2}) ,\\ \widetilde{Z}_{collins}^{\alpha\beta}(Q;b) &= \left(\frac{-ib_{\perp}^{\alpha}}{2}\right) \left(\frac{-ib_{\perp}^{\beta}}{2}\right) e^{-\mathcal{S}_{pert}(Q^{2},b_{*})-S_{NP}^{T}(Q,b)} \\ \times \underbrace{\Sigma_{i,j} \Delta \widehat{C}_{qi}^{collins(e^{+}e^{-})} \otimes D_{i/A}^{(3)} \widehat{C}_{qj}^{collins(e^{+}e^{-})} \otimes D_{j/B}^{(3)} ,\\ \widehat{H}_{1q}(z_{h1}, C_{0}/b) \end{split}$$

And then, we can predict the Collins effect at BEPC.

abstracting Collins functions from BELLE data

	ů –	v	1 0	50 ()
u	0.34 ± 0.006	$3.9 {\pm} 0.71$	$0.85 {\pm} 0.29$	0.013 ± 0.002
d	-0.34 ± 0.013	0.4 ± 0.31	$0.31 {\pm} 0.41$	0.013 ± 0.002

Test the evolution at BEPC

■ E_{c.m.}=4.6GeV, di-pion in e⁺e⁻ annihilation

Because of energy evolution effect, It will be larger than that at BELLE by a factor 2 2013/10/31

Summary

- We studied the Collins effect in the TMD factorization formulism.
- The TMD factorization will lead to a energy evolution effect.
- We can abstract the Collins function from the existing data at BELLE and BABAR.
- Then, we can predict the Collins asymmetry at BEPC.
- The experimental result at BEPC will supply an important test for TMD factorization. 2013/10/31

Thank you very much!

Energy Evolution in TMD factorization scheme

Aybat-Collins-Qiu-Rogers, 2011

Up Quark Sivers Function

Q²-dependence

Aybat-Prokudin-Rogers, 2011

Needs a cross check!

2013/10/31

Collins scheme

TT71112

$$W^{\mu\nu} = \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \int d^{2}\mathbf{k}_{1T} d^{2}\mathbf{k}_{2T} \delta^{(2)}(\mathbf{k}_{1T} + \mathbf{q}_{T} - \mathbf{k}_{2T})$$
$$\times F_{f/p}(x,\mathbf{k}_{1T};\mu;\zeta_{F}) D_{h/f}(z,z\mathbf{k}_{2T};\mu;\zeta_{D})$$

This version is much simpler than that of Ji Ma Yuan

$$\tilde{D}_{H/f}(z, \mathbf{b}_T; \mu; \zeta_D) = \tilde{D}_{H/f}^{\text{unsub}}(z, \mathbf{b}_T; \mu; +\infty - y_h) \sqrt{\frac{\tilde{S}_{(0)}(\mathbf{b}_T; y_s, -\infty)}{\tilde{S}_{(0)}(\mathbf{b}_T; +\infty, -\infty)\tilde{S}_{(0)}(\mathbf{b}_T; +\infty, y_s)}} Z_D Z_2$$

$$\tilde{D}_{H/f}^{\text{unsub}}(z, \mathbf{b}_T; \mu; y_A - y_h) = \sum_X \frac{1}{4N_{c,f}} \text{Tr}_C \text{Tr}_D \frac{1}{z} \int \frac{dw}{2\pi} e^{ik^+w^-} \langle 0|\gamma^+ W(w/2, \infty, n_A)\psi_f(w/2)|h, X \rangle \\ \times \langle h, X|\bar{\psi}_f(-w/2)W(-w/2, \infty, n_A)^{\dagger}|0 \rangle_c$$

Ji Ma Yuan scheme, in SIDIS

Structure function is

$$\begin{aligned} F(x_B, z_h, P_{h\perp}, Q^2) &= \sum_{q=u,d,s,\dots} e_q^2 \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} d^2 \vec{\ell}_{\perp} \\ &\times q \left(x_B, k_{\perp}, \mu^2, x_B \zeta, \rho \right) \hat{q}_T \left(z_h, p_{\perp}, \mu^2, \hat{\zeta}/z_h, \rho \right) S(\vec{\ell}_{\perp}, \mu^2, \rho) \\ &\times H \left(Q^2, \mu^2, \rho \right) \delta^2 (z_h \vec{k}_{\perp} + \vec{p}_{\perp} + \vec{\ell}_{\perp} - \vec{P}_{h\perp}) , \end{aligned}$$

It depends on ρ

$$\hat{q}_{h}(z, P_{h\perp}, \mu, \hat{\zeta}/z, \rho) = \frac{1}{2z} \int \frac{d\xi^{-}}{2\pi} \frac{d^{2}\vec{b}}{(2\pi)^{2}} e^{-i(k^{+}\xi^{-}-\vec{k}_{\perp}\cdot\vec{b}_{\perp})} \\ \times \sum_{X} \frac{1}{3} \sum_{a} \langle 0|\mathcal{L}_{\tilde{v}}(-\infty; 0)\psi_{\beta a}(0)|P_{h}X\rangle\gamma_{\alpha\beta}^{+} \\ \times \langle P_{h}X|(\overline{\psi}_{\alpha a}(\xi^{-}, \vec{b})\mathcal{L}_{\tilde{v}}^{\dagger}(\xi^{-}, \vec{b}; -\infty)|0\rangle/S(b_{\perp}, \mu, \rho)$$

In Aybat-Collins-Qiu-Rogers framework

$$\tilde{K}[b, Q_0, g(Q_0)] = \left(\tilde{K}[b_*, C_1/b_*, g(C_1/b_*)] - \int_{C_1/b_*}^{Q_0} \frac{d\mu}{\mu} \gamma_K(\mu) - g_K(b)\right)$$

And then

$$F(x,b;Q,Q) = F(x,b;Q_0,Q_0) \exp\left\{\ln\frac{Q}{Q_0}\tilde{K}(b_*;\mu_b) + \int_{Q_0}^{Q}\frac{d\mu'}{\mu'}\left[\gamma_F(g(\mu');1) - \ln\frac{Q}{\mu'}\gamma_K(g(\mu'))\right] + \int_{Q_0}^{\mu_b}\frac{d\mu'}{\mu'}\ln\frac{Q}{Q_0}\gamma_K(g(\mu')) - g_K(b)\ln\frac{Q}{Q_0}\right\}$$

Here $g_{K}(b)$ is $g_{c} \times b^{2}$

In Aybat-Collins-Qiu-Rogers framework

$$\tilde{K}[b, Q_0, g(Q_0)] = \left(\tilde{K}[b_*, C_1/b_*, g(C_1/b_*)] - \int_{C_1/b_*}^{Q_0} \frac{d\mu}{\mu} \gamma_K(\mu) - g_K(b)\right)$$

And then

$$F(x,b;Q,Q) = F(x,b;Q_0,Q_0) \exp\left\{\ln\frac{Q}{Q_0}\tilde{K}(b_*;\mu_b) + \int_{Q_0}^{Q}\frac{d\mu'}{\mu'}\left[\gamma_F(g(\mu');1) - \ln\frac{Q}{\mu'}\gamma_K(g(\mu'))\right] + \int_{Q_0}^{\mu_b}\frac{d\mu'}{\mu'}\ln\frac{Q}{Q_0}\gamma_K(g(\mu')) - g_K(b)\ln\frac{Q}{Q_0}\right\}$$

Here $g_{K}(b)$ is $g_{c} \times b^{2}$

Energy evolution

$$\widetilde{F}^{\alpha}_{\text{sivers}}(Q;b) = \widetilde{F}^{\alpha}_{\text{sivers}}(Q_0;b)e^{-\mathcal{S}_{Sud}(Q,Q_0,b)}$$

$$S(Q^2, Q_0^2, b) = -\ln\frac{Q}{Q_0}\tilde{K}[b, Q_0, g(Q_0)] + \int_{Q_0}^Q \left[\frac{d\mu}{\mu}\ln\left(\frac{Q}{\mu}\right)\gamma_K(\mu) - \gamma_F(g(\mu); 1)\right]$$

In our framework

$$\tilde{K}[b, Q_0, g(Q_0)] = -C_F \frac{\alpha_s[Q_0]}{\pi} \ln\left(\frac{Q_0^2 b^2}{C_1^2}\right)$$

At the leading order of a_s

$$S_{Sud} = 2C_F \int_{Q_0}^{Q} \frac{d\bar{\mu}}{\bar{\mu}} \frac{\alpha_s(\bar{\mu})}{\pi} \left[\ln\left(\frac{Q^2}{\bar{\mu}^2}\right) + \ln\frac{Q_0^2 b^2}{c_0^2} - \frac{3}{2} \right]$$

Collins asymmetries in SIDIS

2013/10/31

Sivers asymmetries in SIDIS

to $sin(\phi_h - \phi_S)$

Fit to Sivers asymmetries

- With the evolution effects taken into account.
- Not so large Q difference

$$\widetilde{F}_{UU}(Q;b) = e^{-\mathcal{S}_{sud}(Q,Q_0,b)}\widetilde{F}_{UU}(Q_0;b) ,$$

$$\widetilde{F}_{sivers}^{\alpha}(Q;b) = e^{-\mathcal{S}_{sud}(Q,Q_0,b)}\widetilde{F}_{sivers}^{\alpha}(Q_0;b)$$

$$\widetilde{F}_{UU}(Q_0, b) = \sum_{q} e_q^2 f_q(x_B, \mu = Q_0) D_q(z_h, \mu = Q_0) e^{-g_0 b^2 - g_h b^2 / z_h^2} ,$$

$$\widetilde{F}_{\text{sivers}}^{\alpha}(Q_0, b) = \frac{i b_{\perp}^{\alpha} M}{2} \sum_{q} e_q^2 f_{1T}^{\perp(1)q}(x) D_q(z, \mu = Q_0) e^{-(g_0 - g_s)b^2 - g_h b^2 / z_h^2} ,$$

$$\begin{split} f_{1T}^{\perp(1)u}(x,\mu = Q_0) &= N_u x^{\alpha_u} (1-x)^{\beta} \frac{(\alpha_u + \beta)^{\alpha_u + \beta}}{\alpha_u^{\alpha_u} \beta^{\beta}} f_u(x,\mu = Q_0) \ , \\ f_{1T}^{\perp(1)d}(x,\mu = Q_0) &= N_d x^{\alpha_d} (1-x)^{\beta} \frac{(\alpha_d + \beta)^{\alpha_d + \beta}}{\alpha_d^{\alpha_d} \beta^{\beta}} f_d(x,\mu = Q_0) \ , \\ f_{1T}^{\perp(1)(\bar{u},\bar{d},s)}(x,\mu = Q_0) &= N_{(\bar{u},\bar{d},s)} x^{\alpha_s} (1-x)^{\beta} \frac{(\alpha_s + \beta)^{\alpha_s + \beta}}{\alpha_s^{\alpha_s} \beta^{\beta}} f_{(\bar{u},\bar{d},s)}(x,\mu = Q_0) \end{split}$$

$$\begin{split} N_u &= 0.13 \pm 0.023, \quad \alpha_u = 0.81 \pm 0.16, \quad \beta = 4.0 \pm 1.2 , \\ N_d &= -0.27 \pm 0.12, \quad \alpha_d = 1.41 \pm 0.28 , \\ N_s &= -0.07 \pm 0.06, \quad \alpha_s = 0.58 \pm 0.39 , \\ N_{\bar{u}} &= -0.07 \pm 0.05 , \\ N_{\bar{d}} &= -0.19 \pm 0.12 , \qquad \chi^2/d.o, f \approx 1.1 \\ g_s &= 0.062 \pm 0.0053 . \end{split}$$

Uncertainties in the Sivers functions: moments

2013/10/31

Predictions at RHIC

About a factor of 2 reduction, as compared to previous order of magnitude difference