Crab waist interaction region for FCC-ee (TLEP)

A. Bogomyagkov, E. Levichev, P. Piminov

Budker Institute of Nuclear Physics Novosibirsk

The 55th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders – Higgs Factory Beijing, China October 9-12, 2014

	Z	W	Н	tt
Energy [GeV]	45	80	120	175
Perimeter [km]	100			
Crossing angle [mrad]	30			
Particles per bunch [10 ¹¹]	1	4	4.7	4
Number of bunches	29791	739	127	33
Energy spread [10 ⁻³]	1.1	2.1	2.4	2.6
Emittance hor. [nm]	0.14	0.44	1	2.1
Emittance ver. [pm]	1	2	2	4.3
β_x^*/β_y^* [m]	0.5 / 0.001			
Luminosity / IP				
$[10^{34} cm^{-2} s^{-1}]$	212	36	9	1.3
Energy loss / turn [GeV]	0.03	0.3	1.7	7.7

Montague functions

$$\begin{aligned} b_y &= \frac{1}{\beta_y} \frac{\partial \beta_y}{\partial \delta} , \qquad \qquad \frac{\partial b_y}{\partial s} = -\frac{2a_y}{\beta_y} , \\ a_y &= \frac{\partial \alpha_y}{\partial \delta} - \frac{\alpha_y}{\beta_y} \frac{\partial \beta_y}{\partial \delta} , \quad \frac{\partial a_y}{\partial s} = (K_1 - K_2 \eta_0) \beta_y + \frac{2b_y}{\beta_y} . \end{aligned}$$

Chromaticity

$$\frac{\partial \varphi_y}{\partial \delta} = \frac{1}{2} \int_0^{\Pi} \beta_y (K_1 - K_2 \eta_0) ds,$$

$$\frac{\partial^2 \varphi_y}{\partial \delta^2} = -2 \frac{\partial \varphi_y}{\partial \delta} - \int_0^{\Pi} \beta_y K_2 \eta_1 ds + + \frac{1}{2} \int_0^{\Pi} \beta_y b_y (K_1 - K_2 \eta_0) ds.$$

Chromaticity estimations

First quadrupole Q0

 $K_1L = -\frac{2}{L^*}$, where L^* is distance from IP, changes sign of α_y .

$$\begin{array}{lll} a_y(Q0) & = & K_1 L\beta(Q0) \approx -2 \frac{L^*}{\beta_y^*} \approx -7.6 \times 10^3 \,, \\ b_y(\varphi_y) & = & -a_y(Q0) \sin\left(2\left(\varphi_y - \varphi_y(Q0)\right)\right) \to -7.6 \times 10^3 \,. \end{array}$$

$$egin{array}{lll} rac{\partial arphi_{y}}{\partial \delta}(Q0) &pprox & -3.8 imes 10^{3}\,, \ \partial^{2}arphi/\partial \delta^{2} &pprox & 1.2 imes 10^{5} \end{array}$$

Chromaticity estimations

Final Focus layout

Final Focus layout: sketch of solenoids

Interaction Region optical functions

Final Focus Telescope

Final Focus Telescope: beta chromaticity

Y Chromaticity Correction Section

X Chromaticity Correction Section

Chromaticity Correction Telescope

CRAB section

Interaction Region layout

	L	В	ϕ
	[m]	[T]	[mrad]
SEB0	10.5	0.06	1
SEB1	10.5	0.21	3.7
SEB2	10.5	0.21	3.8
SEB3	14.5	0.21	5.2
SEB4	14.5	0.21	5.2
SEB5	14.5	0.03	0.6
SEB6	14.5	0.01	0.2
SEB7	14.5	-0.13	-3.2
SEB8	14.5	-0.13	-3.2
SEB9	14.5	-0.11	-2.8
Total			11

Chromaticity: Montague functions

Chromaticity estimations

	Sextupoles	Sextupoles	Sextupoles		
	in phase	shifted	additional		
Q_{x}	4				
Q'_{x}	-1.71	-1.62	-1.27		
Q_x''	110	-48	-144		
Q_{x}'''	$-3.6 \cdot 10^{4}$	$-3.4 \cdot 10^{4}$	$-2.9 \cdot 10^{4}$		
<i>Q</i> '''''	-5.3 · 10 ⁵	7.4 · 10 ⁵	8.9 · 10 ⁵		
Q_y	3				
Q'_{y}	-2.15	-1.22	-1.51		
$\overline{Q}_{y}^{\prime\prime}$	1.5 · 10 ³	-38	-24		
$Q_{y}^{\prime\prime\prime\prime}$	$-3.1 \cdot 10^{5}$	$-3.1 \cdot 10^{5}$	$-4 \cdot 10^{4}$		
Q'''''	-1 · 10 ⁶	5.8 · 10 ⁶	5.3 · 10 ⁶		

Sextupoles in phase and no additional sextupoles

Sextupoles shifted and no additional sextupoles

Sextupoles shifted and two additional sextupoles

Sextupoles in phase and no additional sextupoles

Sextupoles shifted and no additional sextupoles

Sextupoles shifted and two additional sextupoles

Dynamic aperture

Saturday, October 11, 2014 09:00 (6) Choice of L* II: IR optics and dynamic aperture 30' Speaker: Dr. Eugene Levichev (BINP)

Conclusion

- A version of interaction region with crab waist is ready.
- Synchrotron radiation is low.
- Beam lines are symmetrical, making tunnel straight.

Questions

- Is it possible to build required final focus quadrupoles?
- e How longitudinal detector field will be compensated?
- Is there a need to increase L*?
- Opposition and fields of the dipoles allow for synchrotron radiation shielding and detector background minimization?